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Introduction

I

1.0 Introduction

Southwest Research Institute (SwRI) was awarded a grant by NASA-Johnson Space Center (JSC)

to perform research in the area of Specification Driven Languages (NASA Grant NAG 9-339). The

purpose of the research was to investigate alternative programming techniques/concepts which

could be utilized in control center software development environments. At the conclusion of the

Specification Driven Language Grant, a follow on grant (NASA Grant NAG 9-435) was awarded

to further pursue Specification Driven Languages and to prototype the concepts investigated during

the previous grant.

This final report is a summary of the work completed under the follow on grant. In summary, the

grant has focused on the following areas of research:

A concept for a more intuitive and graphically based Computation (Comp) Builder was

developed. This concept is the result of knowledge gained during the previous grant and

research performed on the current grant. This concept is described in a document

entitled "Graphical Comp Environment Concepts and Prototype Design

Specifications" and is contained in Appendix A.

The Graphical Comp Builder Prototype was developed to demonstrate the concepts

which were researched during the early phases of this grant. The Graphical Comp

Builder Prototype is an X Windows based graphical tool which allows the user to build

Comps using graphical symbols. The prototype allowed NASA users to become

familiar with the new concepts and allowed the research team to gain feedback on the

viability of the new concepts.

Investigation has been conducted to determine the availability and suitability of the Ada

programming language for the development of future control center type software. The

Space Station Freedom Project (SSFP) has identified Ada as the desired programming

language for the development of Space Station Control Center (SSCC) software

systems. The Department of Defense (DoD) has mandated Ada as the programming

language for all new DoD software. Due to these mandates and related directions within

private industry, an investigation of Ada was necessary.

The results of the research areas described above are contained in the following sections and

appendices of this final report.
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Graphical Comp Concepts

2.0 Graphical Comp Environment Concepts

One of the main goals of the research grant was the development of concepts for a more graphical

means to represent comps. Most comps are constructed from engineering diagrams and flow charts

which describe the system to be monitored. These engineering diagrams and flow charts are very

graphical in nature. Using existing control center software, these engineering diagrams and flow

charts must be manually converted into textual algorithms. These textual algorithms are then

manually entered into the comp builder software.

A concept of a software system was developed as part of this research grant which would allow

comps to be entered into the comp builder software in a manner which more closely matches the

engineering diagrams and flow charts used to describe the systems. This allows comps to be

constructed in a more natural and direct fashion, and more accurately due to the removal of the

manual conversion from a graphical representation to a textual representation. The Graphical

Comp Environment Concepts and Prototype Design Specifications are included as Appendix A of

this final report. The Graphical Comp Environment Concepts and Prototype Design Specifications

contain a concept for a Comp development, maintenance, and operations environment which is

more graphically based than existing textually based environments.

A prototype demonstration of portions of the Graphical Comp Environment Concepts has been

completed. The Graphical Comp Builder portion of the Graphical Comp Environment has been

prototyped and demonstrated to NASA. The Graphical Comp Builder portion of the concept

determines how the formally textual comps will be graphical represented. The Graphical Comp

Builder portion of the environment is also the least dependent on the facilities provided by the

underlying hardware and operating system software. The Graphical Comp Execution Environment

is very dependent on the underlying hardware and operating system software, so this portion of the

concept was not prototyped.

2.1 Graphical Comp Builder Prototype Specifications

The Graphical Comp Builder Prototype Specifications were developed to guide the development

of the demonstration prototype. The knowledge gained on the prior grant during the review of the

Computation Development Environment (CODE) influenced the development of the Graphical

Comp Builder Prototype Specifications. This knowledge was used to ensure that the specifications

identify a software system that is relevant and applicable to a control center environment.

The concepts demonstrated by the Graphical Comp Builder Prototype are a departure from the

textually represented comps. The initial phase of the research grant included an investigation into

the various methods available to graphically represent information similar in nature to the data

contained in the engineering diagrams and flow charts used at NASA.

2.1.1 Graphically Represented Comps

A portion of the research performed on the grant has been in the area of graphically representing

data. Numerous software packages were investigated to determine the currently available

strategies for representing data similar to the engineering diagrams and flow charts used by control

center personnel. Each software package was installed at SwRI and exercised for several days so

a thorough understanding of the mechanisms used to graphically represent data could be assessed.

Once the package had been exercised and evaluated, a review of the graphical representation

mechanisms was developed.
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Graphical Comp Concepts

Numerous software packages were obtained and exercised during the investigation period. The

software packages ranged from very complex and expensive UNIX work station software, to

inexpensive IBM PC programs. These software packages were often very different in nature and

function, but all utilized a graphical means to represent data. Some of the packages investigated

included:

• flow chart generation packages

• microwave circuitry design/simulation packages

• schematic design/drawing packages

• PC board layout packages

• graphics drawing packages

Each package was thoroughly investigated and a review of each package was developed. Packages

which stood out from the others, either because of their effectiveness in representing graphical data

or because of their gross ineffectiveness, were identified. These packages were demonstrated to

NASA during a visit to SwRI on August 3, 1990.

2.1.2 Graphical User Interface

Another important part in the development of the Graphical Comp Builder Prototype was the

selection of the Graphical User Interface (GUI) and the use of the GUI within the Prototype. The

previous grant had determined that even though CODE used a mouse and graphics, it was not

always intuitive or easy to use. The X Windows prototypes developed on the previous grant

improved the GUI of CODE so it was much easier and faster to use. The development of the

Graphical Comp Builder Prototype Specifications attempted to ensure that an intuitive and

efficient user interface was specified.

The review of the various software packages, performed to identify graphical representation

strategies, also provided information into the effective use of a GUI and the mechanisms of each

GUI which would benefit the Graphical Comp Builder Prototype. The strengths and weaknesses

of each package were recorded so the most desirable features of each package could be specified

for use in the Graphical Comp Builder Prototype if appropriate.

The various elements of the GUI utilized by the various software packages were also demonstrated

to NASA during the August 3, 1990, visit to SwRI.

2.1.3 MOAL Language

The prior grant focused extensively on control center language issues. As a result of the research

on the preceding grant, a Backus-Naur Form (BNF) representation of the Mission Operations

Application Language (MOAL) was developed. The specification of the Graphical Comp Builder

Prototype identifies the use of the MOAL language for compatibility with comps developed with

the various versions of CODE. The use of the MOAL language within the new Graphical Comp

Builder Prototype is an example of integration of research performed during the prior grant into the

existing grant.
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Prototype Development

3.0 Graphical Comp Builder Prototype Development

As stated previously, the goal of the research grant was to investigate language concepts and

implementation strategies which could be used to improve control center computation

development and execution environments. The Graphical Comp Environment Concepts and

Prototype Design Specifications were developed to identify the technologies to use to improve

comp environments. Once the Graphical Comp Builder Prototype concepts were formulated,

implementation of the Graphical Comp Builder Prototype was begun.

The Graphical Comp Builder Prototype is a user friendly tool which allows flight controllers or

other users to graphically represent comps. The Graphical Comp Builder Prototype's graphical

representation of a comp is very similar to the engineering diagrams and flow charts used to

describe the systems being monitored in control center environments. The development of the

Graphical Comp Builder Prototype utilized the technologies identified in the Graphical Comp

Builder portion of the Graphical Comp Environment Concepts and Prototype Design

Specifications.

The Graphical Comp Builder Prototype was developed in the C language on UNIX-based Sun

workstations. The first version of the Graphical Comp Builder Prototype used the C language

XView toolkit implementation of the OpertLook GUI. A partially completed OpenLook version of

the Graphical Comp Builder Prototype was demonstrated to NASA on two occasions. Once

experience had been gained with the XView toolkit and the capabilities of the XView toolkit had

been assessed, the Prototype was ported to the MOTIF GUI. The Graphical Comp Builder

Prototype was completed using the MOTIF GUI. The MOTIF and OpenLook GUI's are currently

competing to become the industry standard. The research team was able to assess the strengths and

weaknesses of both GUI's during the development of the Graphical Comp Builder Prototype.

The MOTIF version of the Graphical Comp Builder Prototype has been completed and

demonstrated to NASA-JSC. A complete listing of the C language source code for the MOTIF

version of the Graphical Comp Builder Prototype is included in Appendix F of this final report.

3.1 Graphical Comp Builder Prototype Documentation

A discussion of the implementation of the MOTIF version of the Graphical Comp Builder

Prototype is contained in the Graphical Comp Builder Prototype Documentation. The Graphical

Comp Builder Prototype Documentation was developed to provide information about the

following aspects of the Graphical Comp Builder Prototype:

• The major concepts of the Graphical Comp Builder Prototype are identified and their

implementation within the Prototype are discussed in the first section of the Graphical

Comp Builder Prototype Documentation. This section discusses the graphical nature of

the Prototype and also discusses the Comp hierarchy, report generation, and automatic

code generation features of the Graphical Comp Builder Prototype.

• A more complete list of the various features contained within the Graphical Comp

Builder Prototype are contained in the second section of the Graphical Comp Builder

Prototype Documentation.

• The third section of the Graphical Comp Builder Prototype Documentation contains a

brief discussion of the implementation of the Prototype. This section identifies the

module hierarchy, data files, and data structures of the Graphical Comp Builder

Prototype.
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Investigation of Ada
I

4.0 Investigation of Ada for Control Center Software

As mentioned in the Introduction, NASA has selected Ada to be used in the development of any

new software for SSCC and the DoD has mandated Ada as the programming language for any new

DoD software. Therefore, a preliminary investigation into an Ada version of the Graphical Comp

Builder was conducted. Initial investigation into Ada's acceptance at NASA and the performance

of a program written in Ada are the two areas of investigation to date.

4.1 Ada Investigation

The first step in the investigation into Ada was to determine Ada's acceptance and usage. A

member of the research team attended the Third Annual NASA Ada User's Symposium to

determine Ada's acceptance within the NASA community. A summary of the information gathered

at the NASA Ada User's Symposium is contained in Appendix C.

The second step in the investigation of Ada focused on the relative performance of Ada programs

on two workstations often used in control center environments. The Hartstone Benchmark was

used to provided information regarding the performance of the executables produced by various

Ada compilers. A summary of the findings from the Hartstone Benchmark investigation is also

contained in Appendix C.

4.2 Investigation and Comparison of Ada and C

NASA is about to embark on the development of millions of lines of software for the SSCC and

the Space Station Training Facility (SSTF). Most of the programs written for JSC have been

written in the C or FORTRAN programming languages during the last 5 years. NASA had

originally specified the use of Ada in the development of the SSCC and SSTF software, but in

recent years Ada's acceptance has seemed to dwindle while the acceptance of the C programming

language has accelerated rapidly. To investigate this further, SwRI performed a comparison of the

C and Ada programming languages for control center environments. The results of the

investigation were presented to NASA-JSC on March 8, 1991. A copy of the results of the

investigation are contained in Appendix D of this final report.
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Purpose

1.0 Purpose

This document represents a concept for the Graphical Computational Program (Comp)

Environment. A summary of the investigations made concerning the design and implementation

of the Graphical Comp Builder Prototype (GCB) and its supporting compiler and execution

environment are presented. These discussions will provide the basis from which the Graphical

Comp Environment Prototypes will be built. They will also serve as one of the measures by which

the completed Graphical Comp Environment concept and prototypes will be evaluated.

The prototype Design Specifications will be broken into the following major sections:

• Graphical Comp Builder Prototype (GCB)

• Graphical Comp Compiler Prototype (GCC)

• Graphical Comp Execution Environment Prototype (GCEE)

The Graphical Comp Environment will require aU three of the above identified parts to be a

complete and functional system. Each part will be a separate and independent program, but each

will be designed to operate with the other two.

The Graphical Comp Builder Prototype will allow users to graphically build and maintain fault

detection algorithms (Comps). The Graphical Comp Compiler will input information from the

Graphical Comp Builder Prototype and produce a representation that is suitable for execution by

the Graphical Comp Execution Environment Prototype. The Graphical Comp Execution

Environment Prototype will control the execution of the fault detection algorithms produced by the

compiler.

In the NASA "test bed" environment, the Graphical Comp Execution Environment Prototype will

be used during flight operations, while the Graphical Comp Builder Prototype and Compiler will

be used off-line during development mode operations. The Graphical Comp Builder Prototype and

Compiler each can be used without the other two parts of the environment, but the Execution

Environment will require executable Comps produced by the Compiler Prototype.

Ill !
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GCB Feature Specifications

2.1 GCB Feature Specifications

The Graphical Comp Builder Prototype will provide a number of features to allow users, such as

flight controllers and engineers, to very easily design and document fault detection algorithms.

The number one goal of the Graphical Comp Builder Prototype is to be a tool which is easy to use,

yet contains the elements which are necessary to build fault detection Comps. Many of the features

specified address the ease of use goal.

The Graphical Comp Builder Prototype will also contain several features designed to aid the Comp

implementor in the development of Comps and their supporting documentation. Some of these

features include: a Comp Executer, path generator, and a graphical means to view logical

expressions.

2.1.1 Graphical Interface

The Graphical Comp Builder Prototype will use a set of graphical symbols to represent the

algorithms which arc needed to perform fault detection and notification. The graphical natm'_ of

the Graphical Comp Builder Prototype will make the tool easier to use than existing Comp

builders. The graphical interface specifications are discussed in their own section due to their

importance to the success of the entire Graphical Comp Environment. The graphical interface

specifications are contained in Secdon 2.2 on page 6.

2.1.2 MOAL Support

The Graphical Comp Builder Prototype will allow the user to construct Comps which are based on

the MOAL (Mission Operations Application Language) constructs as identified in the Comp

Builder / Comp Manager Level B Requirements (JSC-23459). The MOAL language has been

specified by JSC flight controllers. The MOAL contains the language elements required by flight

controllers to perform fault detection algorithms.

2.1.3 Report Generation

The Graphical Comp Builder Prototype will provide several reports to document the developed

graphical Comps. The Graphical Comp Builder Prototype will generate a listing of all Comp

inputs, outputs, and possible test cases. The Graphical Comp Builder Prototype will also generate

a report detailing the algorithms contained in the Comps. The algorithm descriptions will be

provided by the user during the specification of DECISION symbols.

The Graphical Comp Builder Prototype will generate a report identifying all possible execution

paths through each Comp. This report may grow to be very large depending on the size of the

Comp, so the user will be notified during the path generation process as to the number of paths.

The user will be allowed to abort the path generation process.

2.1.4 Graphical Representation of Logical Expressions

The Graphical Comp Builder Prototype will allow the user to select a DECISION symbol to be

graphically represented. This function will allow the user to see the logical expression of the

DECISION symbol to be graphically represented. The logical operators will be represented as

graphical symbols. This function will allow the logical expressions of DECISION symbols to be

viewed in terms of AND gates and OR gates in a graphical manner. The graphical representation

of logical expressions may be viewed or printed only. The logical expression cannot be modit'ied

or maintained by the graphical representation.

I
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GCB Feature Specifications

2.1.10 Command Line Comp Specification

The Graphical Comp Builder Prototype may be irtitially executed with a Graphical Comp name

specified as an argument to the Graphical Comp Builder Prototype program. In the event that a

Comp filename is specified, the Graphical Comp Builder Prototype will load the Comp into the

Work Area on start-up.
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2.2.2 Expression Builder

There will be two separate methods available for expression building within the Graphical Comp

Builder Prototype when the user selects a DECISION symbol or a SET symbol. Upon selecting

either a DECISION or SET symbol, the user will have two options: 1) typing the expression into

a popup using the keyboard and having the expression parsed after it is completed, or 2) using a

mouse-driven menu and having the choices for operator and opcrand constrained at each step in

the input process. The second method will be almost identical to the mouse-driven expression

builder in the various versions of the Comp Builder. The graphical expression builder will be called

by the Expression Builder. The f'ast action performed when building an expression will determine

how the expression must be completed. If the user selects a token from the Expression Builder

using the mouse, then the expression must be completed using the mouse and the Expression

Builder. If the user begins typing in an expression, then the expression must be completed using

the keyboard. The user will be given the option of aborting the building of an incomplete

expression. After the expression building is aborted, the user will then have the option of building

the expression with the other mechanism or of starting a new expression with the same mechanism.

The benefit of this approach is that the user who does not need the guidance of the editor may input

expressions quickly, but without immediate error checking, while the novice user will be able to

build both Comps and the expressions within the Comps using mouse driven menus. Both means

of expression building will ensure that only logically sound and syntactically correct expressions

axe entered. The Expression Builder will step the user through the selection of the expression

operands and operators in a way that is syntactically correct (See the MOTIF Comp Builder for

more detxdls.) The keyboard method will also ensure that syntactically correct Comps are built by

parsing the expression after the user has completed typing the expression into the popup.

The user will also have the option of entering the logical form of the expression as well as the Comp

expression. The logical form, if it is included, will appear in the schematic in place of the Comp

form. If the logical form is not entered by the user, then the Comp expression will be displayed in

the DECISION symbol. The logical form will not be parsed nor can it be constructed using the

Expression Builder. The logical form is provided so the user can build graphical comps which axe

easier to understand and axe independent of the language used to construct the executable Comp.

This will allow Comps to be constructed with the logic and hiearchial structure required to perform

the desired fault detection, but the execution dependent portion of the fault detection algorithm

does not need to be completed,

Documentation about the expression for report generation or other purposes may also be entered

at this point, although this text will not appear in the schematic. The Documentation field will be

a much larger text field than either the logical or comp expression. The Documentation field will

be available so the Comp builder can document the algorithms in a completely textual form. The

Documentation field will be included in the documentation produced by the Graphical Comp

Builder Prototype.

2.2.3 Graphical Symbol Placement Model

The Graphical Comp Builder Prototype will require the user to select a graphical symbol from a

menu template for placement in the work area. The user will choose components from a menu

template, and drag or place them in the desired location in the graphical Comp. The graphical

placement model, i.e., the way in which components are placed and connected on the screen, will
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2.2.5 Popups and Text Fields

The Graphical Comp Builder Prototype will use popups wherever necessary to input or display

information to the user. User input text fields will implement the standard OpenLook text field

editing functions to provide a user-friendly and consistent interface. The following text editing

functions will Ix) available in all text edit fields:

• Home and End keys

• Insert and Delete keys

• All other traditional. OpenLook text edit functions, including mouse controlled

positioning of the text cursor

2.2.6 Symbol/Work Area Manipulation Functions

The Graphical Comp Builder Prototype will utilize several modes of operation during the course

of Comp creation and modification. During the different operating modes, the mouse pointer will
be modified to indicate to the user that a different mode is in effect and a status area will also

indicate the current mode.

If the user is in any mode other than Edit Mode, the status area will contain a CANCEL button

which will abort the current function and remm the user back to Edit Mode. The following are two

typical sequences which illustrate the user completing a function and aborting a function:

Edit Mode -> Add Symbol -> Edit Mode -> Move Symbol -> Edit Mode

Edit Mode -> Add Symbol -> CANCEL -> Edit Mode

In both cases, the user is returned to Edit Mode.

The following sections specify the operations that can be performed on the graphical symbols. The

functions aLlow the user to add symbols, connect symbols, and in general maintain the symbols in

the active Comp.

2.2.6.1 Select Symbol

The Select Symbol function wiLl allow the user to select a graphical symbol to be added to the

current Comp and will allow the user to place the selected symbol in the work area. The user will

select a symbol from the available symbols by placing the mouse pointer over the symbol and

clicking with the left mouse button. The selected symbol will then be highlighted. As the pointer

is moved into the work area, an outline of the symbol will be highlighted, allowing the user to place

the symbol. The symbol will be placed when the user clicks the left most mouse button again. The

user can abort the symbol placement by either clicking the left button outside the work area or by

hitting the ESC key. The user can also abort the Select Symbol function by clicking the left mouse

button on the CANCEL button in the status area. If the placed symbol requires additional

information from the user, a popup will be displayed in the work area after the new symbol has

been placed by the user.

2.2.6.2 Connect Symbols

The Connect Symbol function will allow the user to connect two graphical symbols. The Connect

Symbol function wiLl be activated by clicking the center mouse button in the starting symbol. If

l l l l l l
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2.2.6.5 Delete Symbol

The Delete Symbol function will allow the user to delete a graphical symbol and all lines entering

and exiting the symbol. The Delete Symbol function will be available from the Edit Mode menu.

After selecting Delete Symbol from the Edit Mode menu, the user can select a symbol for deletion

by clicking the left mouse button on any cell allocated to a symbol.

The user may abort the Delete Symbol function at any step by clicking the CANCEL button in the

status area or by hitting the ESC key.

2.2.6.6 Delete Line

The Delete Line function will allow the user to delete an existing logical connecting line. The

Delete Line function will be available from the Edit Mode menu and will also be available during

Edit Mode by clicking the middle mouse button while the shift key is depressed.

If the user selects a line that represents more than one logical line, the user will be asked to select

an unambiguous segment of the line to be deleted.

The user may abort the Delete Line function at any time by clicking the CANCEL button in the

status area or by hitting the ESC key.

2.2.6.7 Undo

The Undo function will undo the last n operations. The Undo function will be available from the

Edit Mode menu (See the Mouse Function Summary in the next section.) The Undo function will

store the last n operations in a stack. The initial value for n will be I. This setting may be

configurable by the user.

2.2.6.8 Print

The Print function will print the work area to any PostScript printer. The Graphical Comp Builder

Prototype will initially only print to PostScript devices, but the Graphical Comp Builder Prototype

will be designed with the intention of supporting additional printers. The default paper size will be

8 1/2" x 11". However, the tool will allow the user to dynamically alter the page size, so that the

output may appear on a plotter or other device that uses larger paper size.

The Graphical Comp Builder Prototype work area will be a WYSIWG (What You See Is What You

Get) window similar to applications on the NeXT computer and will operate similar to the sheet

window in FrameMaker. If the default paper size is selected, the work area will represent a standard

8 1/2" x 11" sheet of paper and the resulting printed output will match the on screen window. A

larger paper size will not affect the appearance of the work area; rather, the virtual work area will

extend beyond the work area window, and the user may pan and zoom around the work area to view
different sections of the schematic in the work area window.

2.2.6.9 Select Font and Symbol Size

The user will be able to dynamically change the sizes of symbols and the fonts of text. The function

that changes font size will include the options to change all symbol font sizes, all new symbol font

sizes, or only the font size of the currently selected symbol. In addition, the font sizes of label text,

text not contained in a symbol, will be dynamically configurable. The user will select the font size

menu option and then click oa the symbol whose text is to be changed or anywhere on the label

text to be changed, and a popup window will accept the new font size.
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2.3 GCB Environment Specifications

The Graphical Comp Builder Prototype must be available to as many potential users as possible.

These poten6al users have a varied assortment of computer hardware available on which to run the

Graphical Comp Builder Prototype, so the Graphical Comp Builder Prototype will be written in as

portable a way as is reasonably possible.

2.3.1 Software Environment

The Graphical Comp Builder Prototype will be written initially in the C programming language

using X Windows to supply and control the graphical interface. The Graphical Comp Builder

Prototype will be implemented evenmaUy in lhe Ada programming language when support for X

Windows is available for Ada. OpenLook will be the target X Windows widget set, but the design

of the Graphical Comp Builder Prototype will not preclude a conversion to the MOTIF widget set

to meet NASA's current and future usage requirements.

2.3.2 Hardware Environment

The Graphical Comp Builder Prototype will be implemented initially on UNIX-based, Sun SPARC

Stations. As with any X Windows based application, the client portion of the application and the

X server may reside on very different hardware platforms as long as a network connects the server

and client. Any hardware platform that supports an X Windows server will be sufficient for the

graphical interface portion of the Graphical Comp Builder Prototype. Any UNIX-based computer

will be sufficient for the client portion of the Graphical Comp Builder Prototype. The client and

server portions of the application may reside within the same host, or they may reside on very

different hardware platforms as long as both are connected via an X Windows compatible network.

This will allow any bitmapped display connected to a PC compatible, workstation, or mainframe

to execute the Graphical Comp Builder Prototype.
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comp_create_datel],

comp create_time[l,

comp_update_datefl,

comp_update_time[],

comp_purpose[];

}

2.4.1.2 Work Area Cell Structure

The Graphical Comp Builder Prototype will divide the work area into a number of small cells

which will not be visible to the user. These cells will be used internally to manage the work area.

The Graphical Comp Builder Prototype will maintain a bitmap of the ceils in the work area. This

bitmap will identify which type of construct is contained within each cell. Each cell can be either:.

empty, contain a line, contain a portion of a graphical symbol, or contain text. The work area cell

map will not be dynamically allocated, so the structure size will be kept as small as possible.

The following is the cell map structure which will be used to identify each cell in the work area:

struct Cell {

int cell_type; /* if -1, free cell, otherwise type indicator *I

union {

Symbol *symbol; /* if -1, free cell, else index into symbolmap*/

LineList *lines; /*linked list of lines - cell may be part of >1 line*/

} cell_entry;

}

The following stactically sized and allocated array of cell map strucutres will be maintained:

struct Cell cell map[MAX_ROWS*MAX_COLS};

2.4.1.3 Symbol Structure

The Graphical Comp Builder Prototype will manage an array of symbol structures which will

identify all the structures contained in the work area. The symbol structure will identify the symbol

type, its location in the work area, any connectivity to other symbols, and any other supporting

information. The symbol structures will be dynamically allocated during the execution of the

Graphical Comp Builder Prototype.

The symbol structure will contain a C "union" structure to identify the information that is specific

to the different symbol types. The DECISION symbol will contain the logical expressions and

TRUE and FALSE paths, whereas the PRINT symbol will contain the output text. The following

structure will be used to identify each work area symbol:

struct Symbol {

int symbol_type;

int height, width;

int ulcx, ulcy;

LineList *from lines;

/*identifies the type of symbol*/

/*size of symbol in cells*/

/*upper left comer x and y coordinates*/

/*list of lines entering symbol*/
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2.4.1.4 Line List Structure

The Line List Structure will identify a llst of lines. The Line List will be used in two instances. One

Line List Structure will be used to identify the list of lines which occupy a work area cell. A second

Line List Structure will be used to identify the list of lines which enter each symbol The

dynamically allocated linked list structure of the Line List will be used in place of a statically sized

array. This wiLl reduce the size of the Cell Map Structure and Symbol Strucua'e.

struct LineList {

LineMap *line; /* index intoline map */

LineList *next; /* next line for same cell or symbol */

}

2.4.1.5 Line Map Structure

The Line Map Structure will identify each logical line. The Line Map Structure will contain the

symbols connected by the line, and will point to a Line Cell Map Structure which will list all the

work area ceils used by the line.

struct LineMap {

LineCellMap *line; /* list of line cells */

int from, to; /* indices to symbol map */

}

struct linestruct linemap[MAXLINES };

2.4.1.6 Line Cell Map Structure

The Line Cell Map Structure will identify all the work area ceils which are utilized by a single

logical line. The Line Cell Map will be a NULL terminated linked list of cell indexes.

struct LineCellMap {

int cell row, ceil_col; /* cell map indicies */

LineCellMap *next; /* pointer to next cell map entry */

}

2.4.1.7 UNDO Stack Structure

The UNDO Stack Structure will maintain a list of the last operations performed by the user. This

stack will allow the user to "undo" certain operations.
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This dh'ectory may exist anywhere in the directory hiearchy, but must be named CompLib. The

initial CompLib directory will be created in the GCB directory in the user's home directory.

2.4.2.4 WorkStation Global Table

The Graphical Comp Builder Prototype will maintain a WorkStation Global Table. This file will

contain the names and data types of the values which will be output to other workstation

applications by the Graphical Comps.

2.4.2.._ MSID Table

The Graphical Comp Builder Prototype's main goal is the retrieval of data values and the

execution of fault detection algorithms on those data values. The Graphical Comp Builder

Prototype will initially implement the Space Shuttle data acquisition mechanisms, and the Space

Station Freedom data acquisition mechanisms will be incorporated in the Graphical Comp Builder

Prototype at a later dam. The MSID table is a tile that is used in the Space Shuttle data acquisition

mechanisms. The MSID table identifies the available data points and their corresponding data

types.

The Graphical Comp Builder Prototype will maintain an MSID table. The Graphical Comp Builder

Prototype will maintain a field in the MSID table to identify the MSID's that axe used most

frequently by the user.

2.4.2.6 User Macro Files

The user will be able to store named macro files. These fries will be created by the Graphical Comp

Builder Prototype and will be stored in the user specified macro all.rectory. The default directory

for macro files initially will be the GCB directory in the user's home directory. The macro directory

path may be modified and the new path may be recorded in the user's configuration file. Macro

files will have the following extension: *.MAC.

2.4.2.7 User Configuration File

The Graphical Comp Builder Prototype will have a number of features that axe user configurable.

The user will have the option of saving their desired configuration to a file which is accessed every

time the Graphical Comp Builder Prototype is executexi. The user configuration file will be stored

in the GCB directory in the user's home directory and will have the following name: User.CFG.

The following options will be stored in the User Configuration File:

• The directory path containing the Graphical Comp Files last accessed by the user will

be stored. If a Graphical Comp File is not supplied on the command line at execution,

then the Graphical Comp Builder Prototype will default to the last dixectory that was

accessed by the user. If the user is executing the Graphical Comp Builder Prototype for

the first time, then the GDB directory of the user's home directory will be used as the

defa_r.. The default directory will be displayed to the user during Graphical Comp file
selection.

• The Comp Library directory path will be one of the options stored in the user's

configuration file. This will allow the user to place the library directory where needed.

• The path to the user's macro files can be specified in the User Configuration File. This

will allow the user to place their macro files where needed.

Ilh
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1.0 Purpose

This document describes the functionality and implementation of the Graphical Comp Builder

Prototype. The Graphical Comp Builder Prototype allows users to graphically build and maintain

fault detection algorithms (Comps) for control center environments.

The Graphical Comp Builder Prototype was designed and implemented as the result of

investigation and experience in the following areas:

• existing NASA Comp Builders

• existing NASA high-level languages, such as UIL, GOAL, etc.

• existing applications which manipulate graphical symbols

Knowledge gained from investigations of these three areas formed the basis for the specification

and subsequent implementation of the Graphical Comp Builder Prototype.

This document describes the features provided by the Graphical Comp Builder Prototype and also

describes the implementation of these features. A description of the main concepts of the Graphical

Comp Builder Prototype is contained in the following section, Section 2.0. A list of the features

provided by the Graphical Comp Builder Prototype is contained in Section 3.0, and a description
of the implementation of the features is contained in Section 4.0.
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2.0 Graphical Comp Builder Prototype Concepts

The Graphical Comp Builder Prototype was designed around several basic concepts to make the

process of developing and maintaining Comp algorithms an easier and more intuitive task. This

section describes the key concepts of the Graphical Comp Builder Prototype.

2.1 Graphical Representation of Comp Algorithms

One of the most important aspects of the Graphical Comp Builder Prototype is evident in the

Prototype's name. The Graphical Comp Builder Prototype allows the user to graphically represent

Comp algorithms instead of using traditional text based methods. Comp algorithms are often

designed and documented using graphical representations. Comp algorithm documentation often

looks much like a flowchart. The Graphical Comp Builder Prototype was designed to support the

development and maintenance of Comp algorithms using flowchart type constructs. This feature

makes it very easy to implement Comp algorithms from design documentation and allows the

Graphical Comp Builder Prototype user to maintain Comp algorithms using a representation that

is familiar and comfortable.

The graphical Comp algorithm representation supported by the Graphical Comp Builder Prototype

is based on a set of graphical symbols and logic flow lines. The user builds the graphical Comp

algorithm from the graphical symbols. The order of execution, or algorithm flow, is determined by

the way in which the symbols axe connected by the user.

2.1.1 Graphical Symbols

The Graphical Comp Builder Prototype uses a predefined set of graphical symbols to represent the

various actions that are performed by Comp algorithms. These symbols form the basic building

blocks of each Comp algorithm and represent the basic operations which are performed in every

Comp. The set of graphical symbols is available in a palette menu in the lower left-hand comer of

the Prototype's screen. The user selects the desired symbol and then places it in the Comp Work

Area (see the Work Area Section on page 4 for more information about the Work Area) using the

mouse. The user may then connect the symbols in the Work Area to define the Comp algorithm

flow during Comp execution. The Graphical Comp Builder Prototype allows the user to construct

Comps from the following graphical symbols:

BEGIN oval in shape, no entry point, single exit path. This symbol represents the

beginning of the Comp.

END circle in shape, multiple entry points, no exit path. This symbol indicates the

end of the Comp.

IF modified diamond shape, multiple entry points, two exit paths. This symbol is

used to enter logical expressions into the Comp.

SET rectangle shaped, multiple entry points, single exit path. This symbol

represents the "setting" of a variable or signal, similar to a programming

language assignment statement.

PRINT hollerith card (punched card) shaped, multiple entry points, single exit path.

This symbol represents the output of a formatted string during the execution

of the Comp.

CALL rounded rectangle shape, multiple entry points, single exit path. This symbol

indicates that the current Comp is to be suspended, and the Comp named
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within the symbol is to be started. When the named Comp completes its

execution (reaches its END symbol), execution resumes in the current Comp

at the next symbol. This symbol functions much like a subroutine "call" in a

C or FORTRAN language program.

ACTIVATE modified rectangle shape, multiple entry points, single exit path. This symbol

represents the start of execution of an asynchronous Comp in parallel with the

current Comp. This symbol functions much like a fork() call in a C language

program.

STOP octagon (stop sign) shaped, multiple entry points, single exit path. This

symbol indicates the termination of a parallel Comp. This symbol is used to

"stop" a Comp which was spawned by an ACTIVATE symbol.

PAUSE alarm clock shaped, multiple entry points, single exit path. This symbol

causes the Comp to pause for a specified time period.

It is from this collection of graphical symbols that the user constructs a Comp algorithm.

The shape of the IF, PRINT, and SET symbols were chosen for their expandability. These symbols

often may have to expand to allow the Comp designer to enter tong expressions or text strings. The

squared sides of these symbols may expand or shrink depending on the size of the expression

entered by the Comp designer.

2.1.2 Logical Connecting Lines

Once two or more graphical symbols have been selected and entered in the Work Area, then the

user may logically connect the symbols to define the control flow between the symbols during

execution. The user may very easily introduce looping or recursion simply by connecting one

symbol to another.

2.1.3 Expression Builder

The IF and SET graphical symbols may contain textual logical expressions. It is through these two

symbols that much of the work of a Comp algorithm is performed. The IF symbol is used to

represent a logical expression which returns a true or false value. The result of the logical

expression determines which connecting line is traversed out of the symbol. The SET symbol is

used to assign values to local variables, global variables, and to Work Station Globals. The SET

symbol may be used to put values into Object Access (data acquisition) for retrieval by other

control center applications.

The logical expressions in the IF and SET symbols are called Comp Expressions. Comp

Expressions may be entered via the keyboard or the expressions may be constructed using the

Expression Builder. The Expression Builder is a collection of logical expression building blocks

contained in a menu. The Expression Builder steps the user through the building of Comp

Expressions by activating only the expression building blocks that are valid for the current state of

the logical expression. The Graphical Comp Builder Prototype provides the Expression Builder for

novice users and also allows the more proficient user to enter expressions directly via the keyboard
if desired.

Each IF and SET graphical symbol also allows the user to enter two levels of supporting

documentation for each expression. The user may enter a short description of the expression and a

much longer textual description if desired. The short description may be used to aid the user in the

I
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building of the Comp algorithm, whereas the larger description field is designed to provide

supporting documentation in the printed reports generated by the Graphical Comp Builder

Prototype. These two documentation fields allow the user to logically design and document Comp

algorithms. The logical design of the Comp algorithm may be constructed and documented by one

user, and the Comp Expressions may be entered at a later date, possibly by another user. The

documentation support provided by the Graphical Comp Builder Prototype aids the Comp design

and development process by maintaining the Comp documentation with the Comp itself.

2.1.4 Work Area

The Graphical Comp Builder Prototype allows the user to construct Comp algorithms using

graphical symbols and logical connecting lines. The building of the Comp algorithm takes place

within the Work Area. The Work Area is a large, scrolled area in which the graphical symbols are

placed and connected. A majority of the time spent building a Comp with the Graphical Comp

Builder Prototype is spent in manipulating the graphical symbols and the connecting lines in the

Work Area. The Graphical Comp Builder Prototype has been designed to provide the user with

powerful, yet easy to use functions to manipulate the graphical symbols and connecting lines in the
Work Area.

2.1.4.1 Graphical Symbol Placement Model

The Graphical Comp Builder Prototype allows the user to select a graphical symbol from a palette

menu and then place the symbol in the Work Area. The user may then position the graphical

symbol in any unoccupied place in the Work Area by "dragging" the symbol using the mouse. The

graphical placement model, i.e., the way in which components are placed and connected on the

screen, is a hybrid of the two styles used in most software packages that involve the manipulation

of graphical symbols. These two methods are:

• A grid-based approach

• A cell-based approach

In the grid-based approach, the drawing area is defined by a point grid. A symbol is "snapped" to

the defining set of grid points closest to the desired location; a drawn line is snapped to the grid

points that conform most closely to its path. The benefit of grid-based approach is the precision

with which components can be placed is configured by the granularity of the grid. The grid-based

approach suffers due to the fact that it is harder to place and connect symbols than in other methods.

In the cell-based model, the drawing area is defined by a grid of cells. Each component occupies

exactly one cell. The advantage of this approach is that symbol placement is easy; the user doesn't

have to be concerned with precise placement or uniform spacing. The disadvantage is the

flexibility of arbitrary placement is lost. In addition, connectivity becomes problematic: a line is a

component, and so no more than one line may occupy a cell. Thus, all lines must be a cell width

apart. This severely limits the line drawing capabilities of cell-based applications and negates their
ease of use.

The Graphical Comp Builder Prototype uses a combination of these two approaches. The Work

Area drawing region is composed of a grid of small, unseen cells, and symbols may occupy more

than one cell. Connecting lines may also occupy more than one cell if the line is longer than one

cell in length. Connecting lines are one cell in width but may be many cells in length. Each logical

cell may contain only one of the following:

• a portion of a graphical symbol
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• a portion of a connecting line

Symbol shapes may expand in one-cell gradations to contain long expressions.

The advantages of this hybrid approach are:

• Ease of symbol placement that is comparable to the basic cell-based approach but more
flexible and efficient in its use of Work Area real estate -- there is less "external

fragmentation."

• Flexibility of connecting line placement that approximates that of the grid-based approach,

but because of the restriction that only one line may appear in a cell, gives the user more

structured line placement.

• Arbitrarily large symbols may be constructed which contain long expressions. This is due

to the fact that a single graphical symbol may occupy many logical cells.

• As with the grid-based approach, it is easier to place arbitrary label text.

The Graphical Comp Builder Prototype provides a number of functions to assist the user in the

development of graphical Comp Elements. These functions allow the user to manipulate the

graphical symbols and connecting lines in the Work Area.

2.2 Graphical Comp Hiearchy

The Graphical Comp Builder Prototype allows the user to construct and maintain Comp algorithms

in a very logical and powerful fashion. The Graphical Comp Builder Prototype contains features

which allow the user to group Comps according to function to aid the Comp maintenance process.

The Graphical Comp Builder Prototype also contains features which allow the Comp algorithm

designer to decompose algorithms into a number of smaller, more manageable components. The

Graphical Comp Builder Prototype implements a hiearchy of three main components to allow the

user to decompose algorithms into smaller, more manageable pieces:

• Position

• Comp

• Element

Each of these components of the Graphical Comp Builder Prototype are described in following
sections.

2.2.1 Multiple Position Support

The Graphical Comp Builder Prototype was designed to allow the user to group Comp algorithms

according to their function. In a control center environment, Comp algorithms are usually grouped

together based on the flight control position for which they were designed. The Graphical Comp

Builder Prototype contains and supports the concept of grouping and maintenance of Comp

algorithms based on a flight control position. In the Graphical Comp Builder Prototype, the flight

control position is the highest level in the Comp hiearchy.

2.2.2 Comp Structure

A number of logical Comp algorithms may be necessary for each flight control position and the

Graphical Comp Builder Prototype allows the user to maintain a number of Comps for each

position. The second level in the Graphical Comp Builder Prototype hiearchy is the Comp. Each

Comp may become a stand-alone executable and may be managed by the Comp Manager

I
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application during control center operations. Each Comp is primarily a logical entity and does not

perform the actual work of the Comp algorithm. The Comp component of the hiearchv does not

contain the graphical symbols or connecting lines.

Each Comp is composed of one or more Comp Elements. The Comp Elements contain the

graphical symbols and connecting lines which contain the logic and control flow of the Comp.

Comp Elements form the lowest level of the Graphical Comp Builder Prototype hiearchy.

Comp Elements are analogous to subroutines of a main program. Each Comp contains one or more

Comp Elements and the Comp serves as a container of its Comp Elements. The Comp is the only

entity which may be managed outside the Graphical Comp B uilder Prototype. Comp Elements may

only be maintained using the Graphical Comp Builder Prototype and serve only as the building
blocks from which Comps are composed.

Each Comp contains a root Comp Element. The root Comp Element is the start point of the Comp's

Element hiearchy. The root Comp Element may contain the entire Comp algorithm or the root

Element may call other Comp Elements. As in traditional programming language subroutines,

Comp Elements may transfer program control flow to another Comp Element. When a Comp

Element reaches its END symbol, control is returned to the parent Comp Element. In the event the

root Element reaches its END symbol, the Comp executable is terminated. Using this concept, the

user may build a Comp of practically unlimited depth and breadth by adding calls to other Comp
Elements. The user may decompose complex Comp algorithms into logical subunits and then

decompose individual logical subunits into even more subunits. The following diagram displays

an example Comp which is composed of eight Comp Elements. This example Comp hiearchy
displays the flexibility available for decomposing complex Comp algorithms into smaller,

modular, more manageable components.

Engine 1 Pump Test Comp

Root_( PumpTest )

(TestPumpl ) (TestPump2) (TestPump3)

,/\
(TestPump2Press) (TestPump2Temp)

(LoopACoolant) (LoopBCoolant )
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2.3 Report Generation

The Graphical Comp Builder Prototype was designed to assist the Comp algorithm developer by

automatically generating supporting documentation. Comp algorithm developers often spend more

time producing and maintaining supporting documentation then they do actually developing Comp

algorithms. Two features of the Graphical Comp Builder Prototype assist in the development of

supporting documentation:

• An important aspect of the Graphical Comp Builder Prototype is to allow the user to

maintain supporting documentation in the same tool as the Comp. It is much easier to

maintain supporting documentation when it is readily available in the tool used to build the

Comp algorithm. The Graphical Comp Builder Prototype allows the user to document

Comps at three different levels. The user can document the high level design of the Comp,

the high level design of each Element within a Comp, and the user can document each

logical expression within a Comp Element. The Graphical Comp Builder Prototype user

may also document each Comp Element by placing label text at any location in the Work
Area.

• The Graphical Comp Builder Prototype automatically generates a printed report which

contains much of the information needed in Comp algorithm supporting documentation.

The report generated by the Graphical Comp Builder Prototype contains information used

to generate the Comp executables (lists of variables and their data types, etc.) and also

contains the supporting documentation entered by the user.

The combination of these two features make the development of supporting documentation much

easier for the Comp algorithm designer.

2.4 Automatic Code Generation

The Graphical Comp Builder Prototype's main purpose is to allow the user to specify a fault

detection algorithm which can be performed during control center operations. The Graphical Comp

Builder Prototype captures information from the user and then generates an executable program

which can be run during operations. The executables produced by the Graphical Comp Builder

Prototype are built automatically within the Graphical Comp Builder Prototype. The Graphical

Comp Builder Prototype performs the following process to produce an executable which can be

performed during operations:

• The Graphical Comp Builder Prototype first audits each Comp Element to ensure the user

has properly connected the graphical symbols. The Graphical Comp Builder Prototype then

audits each graphical symbol to ensure the logical expressions are properly completed.

• If errors are not detected during the audit of the Comp Element, then a C language source

file is generated for the Comp Element. The Comp Element's C language source file is then

compiled using the resident C compiler. An object file is produced for each Comp Element

C language source file.

• Once all of the C language source files for each Comp Element have been generated and

successfully compiled, then a C language source file is produced for the Comp. The

Comp's C language source file contains initialization code and also contains the call to the

root Element. The Comp's C language source is then compiled to produce an object file.

I I
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• After the object files are produced for the Comp and for each of the Comp's Element files,

then all of the object files are linked together to produce a Comp executable.

• The executable produced from this process can be run during control center operations. The

executables produced by :he Graphical Comp Builder Prototype are dependent on several

other applications in the control center:

The executables produced by the Graphical Comp Builder Prototype are usually

controlled by a master program called the Comp Manager. The Comp Manager

application is used to start and stop the Comp executables. The Comp executables are

not designed to be run directly from the command line. The Comp Manager is used to

control and monitor the execution of the executables produced by the Graphical Comp

Builder Prototype.

The executables produced by the Graphical Comp Builder Prototype display messages

on the flight controller's screen to report the status of the system being monitored by

the Comp and to report the status of the Comp itself. The Comp designer specifies what

types of messages to display and when to display the messages during execution by

placing PRINT symbols in the Comp's Elements. The Comp executables do not display

these messages on the flight controller's screen directly. The messages are sent to

another application program which controls the flight controller's screen.

The executables produced by the Graphical Comp Builder Prototype retrieve data from

the control center's data acquisition system. The Comp executables automatically are

built with the proper interfaces to the control center's data acquisition system.

2.5 User Interface

The Graphical Comp Builder Prototype is an X Windows and MOTIF based tool. The Graphical

Comp Builder Prototype screen is composed of four main areas:

• MOTIF menu bar

• Comp Element Work Area

• Comp status area

• Graphical symbol palette menu

The MOTIF menu bar contains most of the Graphical Comp Builder Prototype menus. The Comp

Element Work Area is a large scrolled window area in which the graphical Comp is constructed.

The Comp status area contains various information to identify the current Comp Element which is

active in the Work Area and also contains information about the Comp. The graphical symbol

palette menu contains bitmappe,.l icons which represent the available Comp Element building

blocks. The graphical symbol palette menu is overlaid with the Expression Builder during the

completion of IF and SET symbcls.

The Graphical Comp Builder Prototype uses popups wherever necessary to input or display

information to the user. User input text fields are implemented using the standard MOTIF text

fields to provide a user-friendly and consistent interface. Each popup uses a consistent button

layout to provide a consistent interface:

• each popup contains a CANCEL button which is located at the bottom left of the popup
form.

• each popup contains a HELP button which is located at the bottom right of the popup form.
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• most popups contain a DONE button which is located at the bottom of the popup form just

to the right of the CANCEL button.
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3.0 Graphical Comp Builder Prototype Features

The Graphical Comp Builder Prototype provides a number of features to allow users, such as flight

controllers and engineers, to very easily design and document fault detection algorithms. This

section details the various features and capabilities of the Graphical Comp Builder Prototype.

Section 4.0 of this document discusses the implementation of these features.

3.1 Graphical Representation of Comp Algorithms

The Graphical Comp Builder Prototype allows the user to build and maintain Comp algorithms

using graphical symbols much like a flow chart. The flow chart type representation of the Comp

algorithm is easier to understand than existing textually based methods. The flow chart type

representation of the Comp algorithm is constructed in the Work Area portion of the Graphical

Comp Builder Prototype's screen. The Graphical Comp Builder Prototype provides a number of

features which allow the user to very easily build and maintain the Comp algorithms in the Work

Area.

3.1.1 Work Area

The Work Area has several features to make the building and maintenance of graphical Comps

easier. The Work Area is a large, scrolled window. The user may construct graphical Comps which

are larger than the size of the Work Area. The Work Area scroll bars allow the user to move within

the graphical Comp. The user may also "zoom out" to view the Work Area in a reduced scale view.

The reduced scale view allows the user to view the entire Comp algorithm in the Work Area. The

user may edit the Comp algorithm in the Work Area while working in the reduced scale view. All

functions which are available in the full scale view are also available in the reduced scale, or

zoomed view.

The Work Area has two "speed" menus which provide both Work Area specific funtions and

general file functions. The Work Area specific functions are only available via the speed menus.

The general file functions are available via other menus within the Graphical Comp Builder

Prototype.

3.1.2 Add Symbol

The user may add a new graphical symbol to the Comp algorithm in the Work Area. To add a new

symbol, the user clicks the left mouse button in one of the symbols in the symbol palette menu. If

the symbol to be added is a BEGIN or END symbol, the symbol will appear in the Work Area and

the user may place the symbol using the mouse. Otherwise, a popup will be displayed which allows

the user to complete the information required for the symbol. Once the information has been

entered in the popup, the new symbol will appear in the Work Area and the user may place the

symbol using the mouse.

3.1.3 Move Symbol

The user may move a single graphical symbol within the Work Area by placing the mouse pointer

in the symbol and then dragging it within the Work Area while holding down the left mouse button.

If a symbol contains connecting lines, its connecting lines will be deleted after the symbol is

moved. The Graphical Comp Builder Prototype currently does not attempt to maintain line

connectivity after a symbol has been moved. This limitation is mitigated by the ease with which

the user can connect symbols and by the Move Block function which allows the user to move a

collection of symbols while maintaining their line connectivity.

I I
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The Move Symbol function can be "undone" by the UNDO function. The UNDO function will

restore the symbol to its original location and will restore any connecting lines if any existed at the

symbol's original location.

3.1.4 Edit Symbol

The user may edit the contents of any symbol in the Work Area by placing the mouse pointer in

the symbol and then clicking the right mouse button. The same popup which allowed the user to

originally define the symbol will then allow the user to modify the symbol's contents and

attributes. The UNDO function will not recover changes made by the Edit Symbol function.

3.1.5 Symbol Implode

The user may "implode" into CALL and ACTIVATE symbols. The Implode function allows the

user to edit the Comp Element specified in the symbol. Implode is a faster method of selecting a

Comp Element to edit. The Implode function could be performed by Select Element and then

choosing the proper Comp Element. Implode allows the user to point to a symbol and then implode

into that symbol. The user may Implode into a symbol by placing the mouse pointer in a CALL or

ACTIVATE symbol and then clicking the right mouse button while holding down the shift key.

3.1.6 Delete Symbol

The user may delete a single graphical symbol within the Work Area by placing the mouse pointer

in the symbol and then clicking the left mouse button while the shift key is held down. The

graphical symbol and its connecting lines are deleted from the Work Area.

The Delete Symbol fucntion can be "undone" by the UNDO function. The UNDO function will

restore the symbol to its original location and will restore any connecting lines if any existed at the

symbol's original location.

3.1.7 Connect Symbols

The user may logically connect two symbols within the Work Area. To connect two symbols, the

user places the mouse pointer within the first symbol, clicks the middle mouse button, then the user

moves the mouse out of the symbol in the direction in which to draw the connecting line.

Orthogonal anchor points may be placed at any point during the construction of the line by clicking

the middle mouse button. To conclude the line, the user places the mouse pointer within the end

symbol and clicks the middle mouse button.

Connecting lines may not go thrcugh symbols other than the start or end symbol. Connecting lines

have an associated direction and the connecting lines are drawn with arrow heads to indicate the
direction.

The Connect Symbols function can be "undone" by the UNDO function. The UNDO function will

remove the connecting line which was just added to the Work Area.

3.1.8 Delete Connecting Line

The Delete Line function allows the user to delete an existing logical connecting line. The user may

delete a connecting line by placing the mouse pointer on the line and clicking the middle mouse

button while the shift key is depressed.

The Delete Line fucntion can be "undone" by the UNDO function. The UNDO function will restore

the connecting line which was deleted.

! I
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3.1.9 Move Block

The Move Block function allows the user to mark a set of symbols and their connecting lines using
a rubber-banded box and to move them via the mouse to another location within the Work Area.

The Move Block function is available via the right mouse button speed menu in the Work Area.

The user selects the rectangle anchor point by clicking the left mouse button, then the user can

expand the rectangle by moving the mouse. The user can anchor the size of the bounding box by

clicking the left mouse button a second time. The user will see a rectangular box which indicates

the area to be moved and can place this area by moving the mouse. The selected area can then either

be anchored in the new location by clicking the left mouse button, or the Move Block function can

be aborted by clicking the CANCEL button in the Status area.

The Move Block fucntion can be "undone" by the UNDO function. The UNDO function will move

the symbols and their connecting lines to their original position in the Work Area.

3.1.10 Copy Block

The Copy Block function allows the user to mark a block of symbols and their connecting lines

using a rubber-banded box and to copy them to a new location in the Work Area. The Copy Block

function is available via the right mouse button speed menu in the Work Area. The user selects the

Copy Block rectangle anchor point by clicking the left mouse button, then the user can expand the

rectangle by moving the mouse. The user can anchor the size of the bounding box by clicking the

left mouse button a second time. The user will see a rectangular box which indicates the size of the

area to be copied and can place this area by moving the mouse. The selected area can then either

be anchored in a new location by clicking the left mouse button, or the Copy Block function can

be aborted by clicking the CANCEL button in the Status area.

The Copy Block function can be "undone" by the UNDO function. The UNDO function will

remove the new symbols and their connecting lines from the Work Area.

3.1.11 Delete Block

The Delete Block function allows the user to mark a block of symbols and their connecting lines

using a rubber-banded box and to delete them. The Delete Block function is available via the right

button speed menu in the Work Area. The user selects the rectangle anchor point by clicking the

left mouse button, then the user can expand the rectangle by moving the mouse. The user can

anchor the size of the bounding box by clicking the left mouse button a second time. The user will

see a rectangular box which indicates the area to be deleted. The Delete Block function can be

aborted by clicking the CANCEL button in the Status area.

The Delete Block function can be "undone" by the UNDO function. The UNDO function will

restore the symbols and their connecting lines.

3.1.12 UNDO and CANCEL

The Comp Status Area contains a dual function push button which may be used to cancel or "undo"

functions which are performed within the Graphical Comp Builder Prototype. The push button is

a CANCEL button if the user is in the midst of performing any of the above mentioned functions,

otherwise, the push button will be an UNDO button. The push button label changes during

execution of the Graphical Comp Builder Prototype to indicate which function is active.
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The CANCEL function allows the user to cancel the current operation. Almost every multi-step

function can be canceled. The following are examples of how the CANCEL button may be used

within the Graphical Comp Builder Prototype:

• The user may abort the addition of a new symbol at any point by selecting the CANCEL

button. The user may abort during symbol placement and while editing a symbol's

information in the symbol specific popup.

• The user may abort the connection of two symbols at any point by selecting the CANCEL

button.

Many of the functions performed in the Work Area are recorded so the user can "undo" the function

after it is completed. The UNDO function restores the Work Area to the state it was in before the

user performed the last function. The effects of an UNDO depend on the function last performed

by the user. An UNDO may perform something as simple as moving a single symbol, or it may

perform a more complex operation such as copying a group of symbols and their connecting lines.

The UNDO function is also available from the left mouse button speed menu.

3.2 Position Management

The Graphical Comp Builder Prototype allows the user to organize Comps into different

directories for different flight control positions. This allows the user to maintain Comps for

multiple flight control positions on a single workstation or Network File System (NFS) disk. The

Graphical Comp Builder Prototype contains several functions to support multiple Positions.

3.2.1 Select Position

The Select Position function allows the user to select an existing Position directory. The Select

Position function allows the user to traverse the file system hiearchy in the event the Position

directories are not located in a single subdirectory.

3.2.2 Create Position

The Create Position function allows the user to create a new Position directory. The Create Position

function prompts the user for the new Position name and then displays the name and path of the

directory which will be created.

3.3 Comp Management

The Graphical Comp Builder Prototype allows the user to maintain multiple Comps within a

specified flight control position. The Graphical Comp Builder Prototype contains a number of

functions to assist the user in the maintenance of Comps.

3.3.1 Select Comp

The Select Comp function allows the user to select from a list of existing Comps within the

specified Position.

3.3.2 Create Comp

The Create Comp function allows the user to create a new Comp within the specified Position. The

Create Comp function creates a new directory within the Position directory. All of the files for a

single Comp are maintained in the Comp directory. The Create Comp function prompts the user

for the Comp's purpose and the name of the Comp Element which will be the root Element of the

Comp.
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3.3.3 Select Comp Root Element

The Select Comp Root Element function allows the user to select the root Comp Element of a

Comp's hiearchy. The Select Comp Root Element function allows the user to select the root

Element from a list of Comp Elements which comprise the Comp.

3.3.4 Edit Comp Purpose

The Edit Comp Purpose function allows the user to edit and save the Comp Purpose text which is

displayed in the Status area of the Graphical Comp Builder Prototype. The Edit Comp Purpose

function displays the Comp's current Purpose text, and then allows the user to modify the text.

3.3.5 Display Comp CallFIow

The Display Comp CallFlow function displays the hiearchy of the Comp Element calls within a

Comp. The Display Comp CaliFlow starts at the root Element of the Comp and recursively
traverses the list of Element calls. The hiearchy of Element calls are presented to the user in the

Displayer.

3.3.5.1 Displayer

The Displayer is a large, output only window that allows the user to monitor the progress of several

operations within the Graphical Comp Builder Prototype. The Displayer allows the user to monitor

the progress of operations which may take more than a couple of seconds to complete. The

Displayer is used during the following operations:

• The Displayer is used during the Installation of an Element. The Displayer allows the user

to view the different stages of Element Installation and also displays status information.

• The Displayer is used during the Installation of a Comp. The Displayer allows the user to

view the different stages of Comp Installation and also displays status information.

• The Displayer is used during the Comp Validation process.

The Displayer popup window is not modal. The user may leave the Displayer popup window on

the screen even after the operation which caused the Displayer to be displayed has completed. This

allows the user to refer to information within the Displayer during the editing of Comp Elements.

The output of the Displayer is recorded into a disk file.

3.3.6 Install Comp

The Graphical Comp Builder Prototype's ultimate mission is the generation of a Comp executable

which can be managed by the Comp Manager. There are two main steps in the generation of a

Comp executable from the Comp entered by the user:

• The graphical Comp is converted into C language source files.

• The C language source files generated by the Graphical Comp Builder Prototype are

compiled and linked to produce a Comp executable.

These two steps are implemented via the "Install Element" menu button and the "Install Comp"

menu button. C language source files are generated via the "Install Element" menu button and an

executable Comp is produced via the "Install Comp" menu button. See the Install Element section

on page 16 for more details about the Install Element function.

The Install Comp function first ensures that an object file has been produced for each graphical

Comp Element in the Comp. The Install Comp function then generates several C language source
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flies for the Comp. These source files are compiled, and then the resulting object file and the Comp

Element object files are linked together to produce a Comp executable. The results of the Install

Comp process are presented to the user in the Displayer.

3.3.7 Validate Comp

The Validate Comp function is designed to verify the data types and sizes of the values retrieved

and stored in Object Access match the definitions contained in the Object Access and Work Station

Global tables. The Validate Comp function presents its results to the user in the Displayer.

3.3.8 Comp Report Generation

The Graphical Comp Builder Prototype provides several printed reports to document the

developed Comps and graphical Comp Elements. The printed reports are available via the Print

Comp and Print Element menu buttons. The Print Comp function will generate a multipage printed

report which contains the information for the current Comp. The Print Comp report contains the

following information:

• Comp name

• Comp purpose

• List of Comp Elements which comprise the Comp

• List of global variables used in the Comp

• An Element level report for each Comp Element in the Comp

An example report generated by the Print Comp function is contained in Appendix A.

The Graphical Comp Builder currently only supports PostScript printers during the generation of

printed reports.

3.4 Element Management

The Graphical Comp Builder Prototype allows the user to maintain multiple Comp Elements

within a specified Comp. The Graphical Comp Builder Prototype contains a number of functions

to assist the user in the maintenance of Comp Elements.

3.4.1 Select Element

The Select Element function allows the user to select from a list of existing Comp Elements for the

specified Comp.

3.4.2 Create Element

The Create Element function allows the user to create a new Comp Element within the specified

Comp. The Create Element function prompts the user for the new Element's name and purpose

text.

3.4.3 Delete Element

The Delete Element function allows the user to delete a Comp Element from the specified Comp.

The user may select from a list the Comp Element to delete.

3.4.4 Save Element

The Save Element function will save all information for the current Comp Element to disk. The

Save Element function will also update the Comp file and its related information.
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3.4.5 Copy Element

The Copy Element function allows the user to copy the Comp Element in the Work Area to a new

Comp Element with a different name.

3.4.6 Edit Element Purpose

The Edit Element Purpose function allows the user to edit and save the Comp Element's Purpose

text which is displayed in the Status area of the Graphical Comp Builder Prototype. The Edit

Element Purpose function displays the Comp Element's current Purpose text, and then allows the

user to modify the text.

3.4.7 Print Element

The Print Element function allows the user to print the Comp Element active in the Work Area.

The user may print the Comp Element in one of two modes:

• The user may print a Comp Element in the "normal" mode. The normal mode report prints

the Comp Element in the Work Area using the same size symbols and fonts as is used to

display the Comp Element in the Work Area. The normal mode report requires as many as

4 pages to print the entire Element due to the fact that the Work Area is larger than a single

sheet of 8 1/2" by 11" paper.

• The user may also print a Comp Element in "reduced" mode. The reduced mode report

prints the entire Comp Element on a single 8 1/2" by 11" page. The reduced mode report

uses a smaller symbol size and font to fit the entire Work Area on a single page.

An example report generated by the Print Element function is contained in Appendix B.

3.4.8 Audit Element

The Audit Element function allows the user to verify the Comp Element has been properly

constructed and is ready for Installation. The Audit Element function operates on the graphical

Comp Element active in the Work Area. The Audit Element function is composed of two functions

which perform the following checks:

• The Audit Lines function will check the logical connectivity of each of the graphical

symbols in the Work Area. The Audit Lines function will ensure that each symbol has at

least one line entering the symbol and at least one line leaving the symbol. In the case of an

IF symbol, the Audit Lines function wiU ensure the IF symbol has both a TRUE and

FALSE logical connecting line leaving the symbol.

• The Audit Expressions function will check the Comp Expression of each of the graphical

symbols in the Work Area. The Audit Expressions function will ensure the Comp

Expression exists and that it is syntactically correct. The Audit Expressions function will

parse and type check the Comp Expression to verify it is syntactically and semantically
correct.

The Audit Lines and Audit Expressions functions can be performed separately or they may be

performed together.

The Audit Element function highiights the symbols which have failed the specified Audit tests. The

symbol highlighting may be turned off via the Clear Audit function.

I
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3.4.9 Install Element

The Install Element function generates a MOAL or C language source file for the graphical Comp

Element in the Work Area. If a C language source file is generated for the Element, then the C

language source file is compiled to produce an object file. If an object file is successfully produced,

the Install Element function marks the Comp Element as up-to-date. If the user makes and saves

any changes to the graphical Comp Element, the Comp Element is marked as being out-of-date.

This feature will ensure the user's object files are consistent with their corresponding graphical

Comp Element. The Install Element process is presented to the user in the Displayer.

3.5 Options Management

The Graphical Comp Builder Prototype has several user configurable options. Some of these

options may be configured during the execution of the Prototype. The following sections describe

the options which are user configurable during the execution of the Graphical Comp Builder
Prototype.

3.5.1 Display Options

The Display Options function displays a popup which identifies the different user configurable

options and each option's current value. The Display Options popup contains the following
information:

• The name of the flight control Position in which the user is working is displayed.

• The name of the current Comp is displayed.

• The name of the Comp Element which is active in the Work Area is displayed.

• The path and filename of the Displayer output file is displayed.

• The path and filename of the Error Log file is displayed.

• The state of the Symbol Snap toggle is displayed.

• The state of the Comp Element Audit toggle is displayed.

• The target language for Installation operations is displayed.

• The path and filename of the Object Access Table is displayed.

• The path and filename of the Work Station Global Table is displayed.

• The path to the User Defined Functions is displayed.

• The user's name, as determined from the/ere/password file, is displayed.

• The current time and date, as determined from the computer's system clock is displayed.

The time and date displays are not updated while the Display Options popup is displayed.

3.5.2 Symbol Display

The Graphical Comp Builder Prototype allows the user to control the display of the expressions in

the graphical symbols. The Symbol Display function allows the user to specify whether the Comp

Expression or Logic Description text should be displayed in the symbols in the Work Area. The

Symbol Display function is available in both the Options menu and the right mouse button speed
menu.
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3.5.3 Symbol Snap

The Graphical Comp Builder Prototype allows the user to place and move the graphical symbols

in the Work Area using either a snap grid or free hand. If the symbols are placed or moved while

snap is turned on, the symbol will be "snapped" so that the center of the symbol will be on a snap

line. The symbols are snapped so that the center of the symbol is on the snap grid. This allows the

user to line up the connecting lines which exit symbols.

The user may also place symbols free hand. The Work Area is bordered by a ruler bar which may

be used to place symbols or connecting lines. The ruler bar contains a moving pointer which

displays the location of the mouse pointer. The ruler bar pointer indicates the center of the symbol

during symbol movement functions and indicates the end of the current line segment during

connecting line functions.

3.5.4 Audit Toggle

The Audit Toggle controls the operation of the Audit Element function. The user may etect to turn

the Audit Element function continuously on or the user may wish to explicitly select the Audit

Element function as desired. If the Audit Element function is continuously turned on, the Comp

Element in the Work Area will be Audited every, time an operation is perfomed in the Work Area.

3.5.5 Set Colors

The Set Colors function allows the user to set the foreground and background colors of the

graphical symbols in the Work Area. The Set Colors function affects only the current Comp

Element. The specified colors are saved with the Comp Element and are restored every time the

Comp Element is read into the Work Area. The Set Colors function allows the user to set the color

of individual symbol types, or the user can set all symbol types to the same color. For example, the

user can set all BEGIN symbols to a blue background and all END symbols to a yellow

background.

3.5.6 Set Target Language

The Graphical Comp Builder Prototype was designed to automatically produce source code for

several different languages. The Set Target Language function of the Graphical Comp Builder

Prototype allows the user to select which language to use during the automatic generation of the
source files:

• The Graphical Comp Builder Prototype can automatically generate C source files.

• The Graphical Comp Builder Prototype can also automatically generate MOAL source

files. A compiler currently does not exist for MOAL language files, so a Comp executable

can not be produced if MOAL is chosen as the target source language.

• The Graphical Comp Builder Prototype was also initially designed to support UIL source

files and the Set Target Language popup contains a UIL option. Due to the unavailability

of UIL, the UIL source code generation functions were not completed in the Graphical

Comp Builder Prototype. The Set Target Language popup will inform the user that UIL

source code generation has not been implemented if the user selects UIL in the Set Target

Language popup.

I

Page 18

I

GCB Documentation



GCB Features

3.6 Help System

The Graphical Comp Builder Prototype contains two levels of online help text to assist the user

during execution of the Prototype. The Graphical Comp Builder Prototype allows the user to select

Help from the main menu bar. Within the main menu bar help, there are three categories of help
text:

• The user can view help text which describes the conventions of the Work Area. This set of

help text identifies the different mouse button conventions and their function.

• The user can view help text which describes the graphical symbol palette menu. This set of

help text describes the function of the different graphical symbols. The user may use the

mouse to select the graphical symbol for which to display help text.

• The user may also browse through the entire collection of help text. All of the help text for

the Graphical Comp Builder is maintained in a single disk fde. The user may browse

through the entire file if desired.

Each of the Graphical Comp Builder Prototype popup windows contains a HELP button in the

lower right hand comer of the popup. This HELP button allows the user to view the help text for
the current popup window.
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4.0 GCB Implementation Notes

This section provides the details concerning the implementation of the Graphical Comp Builder

Prototype. The Implementation Notes are contained in three sub-sections:

• Data Files - this sub-section details the various disk files maintained or accessed by the

Graphical Comp Builder Prototype.

• Data Structures - this sub-section details the most important data structures which are

maintained by the Graphical Comp Builder Prototype.

• Module Hiearchy - this sub-section describes the general layout and program flow of the

major modules within the Graphical Comp Builder Prototype.

These sub-sections provide the user with information specific to the implementation of the

Graphical Comp Builder Prototype. To gain a thorough understanding of the Graphical Comp

Builder's Module Hiearchy and its implementation, it is important to fin'st understand the nature of

X Windows and Motif event driven applications. Refer to X Windows documentation for

information about event driven applications.

4.1 Data Files

The Graphical Comp Builder uses a number of data files in several different directories during

execution. The following subsections describe the purpose of the various data files and also

identifies the directories where the Graphical Comp Builder Prototype expects to locate these data
files.

4.1.1 Position Directory

The Graphical Comp Builder Prototype allows the user to maintain different flight control

positions. Each logical flight control position is maintained in a separate directory. The Position

Directories can be identified by their ".POS" extension. The ".POS" extension is searched for by

the Select Position functions within the Graphical Comp Builder Prototype. The Create Position

functions in the Graphical Comp Builder Prototype will automatically create a Position Directory

with the correct extension. The Position Directories may reside at any place within the Unix file

system. The Position Directory basename will correspond to the Position name. For example, the

Position Directory for the INCO Position would be: INCO.POS.

4.1.2 Comp Directory

The Graphical Comp Builder Prototype creates a subdirectory for each Comp which is created

during execution. The Comp Directories are created as subdirectories of the Position Directory.

Each Comp Directory must end with a ".DIR" extension. The Select Comp functions within the

Graphical Comp Builder Prototype will search for the ".DIR" extension. The Create Comp

functions will automatically create Comp Directories with the proper extension. The Comp

Directory basename will correspond to the Comp name. For example, the Comp Directory for the

PumpSwitch Comp would be: PumpSwitch.DIR.

4.1.3 Comp File

Each Comp Directory will contain a Comp File. The Comp File serves several purposes:

• The Comp File contains the Comp Purpose text.
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• The Comp File contains a list of the Elements which are maintained in the corresponding

Comp Directory.

• The Comp File contains the Comp's symbol table.

The Comp File can be identified by its ".CMP" file extension. Only one Comp File exists for each

Comp and only one Comp File should exists within a Comp Directory. The Comp File basename

will correspond to the Comp name. For example, the Comp File name for the PumpSwitch Comp

would be: PumpSwitch.CMP.

The Comp File is automatically maintained by the Graphical Comp Builder Prototype and each

Comp File is composed of three logical parts in the following order:

Comp Purpose Length and Text

List of Elements

Comp Symbol Table

4.1.4 Graphical Element File

Each Comp is composed of one or more Comp Elements. Each Element is maintained in a

Graphical Element File. The Graphical Element files serve several purposes:

• The Graphical Element File contains the Element purpose text and several status indicators

including: Element Creat_ Date, Element Update Date, and Element Author.

• The Graphical Element File contains the data which identifies the location and type of each

of the graphical symbols within the Element.

• The Graphical Element File contains the expressions and supporting text for each of the

graphical symbols within the Element.

• The Graphical Element File contains the data which identifies the connecting lines which

logically connect the graphical symbols.

The Graphical Element files of a Comp are maintained in the Comp Directory. Graphical Element

files may be identified by their ".GEF" extension. The Graphical Element File basename will

correspond to the Element name. For example, the Graphical Element File name for the

MainPump 1 Element would be: MainPump 1.GEF.

Each Graphical Element File is automatically maintained by the Graphical Comp Builder

Prototype and each file is composed of six logical parts in the following order:
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Element Status Values

Element Purpose Length and Text

Element Symbols and Text

Element Line Segments

Element Logical Lines

Element Line Lists

4.1.5 Library Graphical Element Directory

The Graphical Comp Builder Prototype allows the user to maintain a Library of Graphical Element

Files. The Library of Graphical Element Files is maintained in a directory specified by the user via

the User Configuration File (see the User Configuration File section on page 24 for information on

the User Configuration File).

4.1.6 Comp Installation Files

The Graphical Comp Builder Prototype uses a number of files during the generation and linking of

the Comp executable. These files have different functions and reside in several different locations.

4.1.6.1 Comp Header File

During the Comp Installation, a header file ("*.h") is created in the Comp Directory containing an

"extern" for each of the Comp's global variables. The Comp Header File basename will correspond

to the Comp name. For example, the Comp Header File name for the PumpSwitch Comp would

be: PumpSwitch.h. The Comp Header File is used during the compilation of the Element C

Language Source Files.

4.1.6.2 skeleton element.o

The skeleton_element.o file is linked into the Comp executable during the Comp Installation

process. This file resides in the Graphical Comp Builder executable directory. The

skeleton_element.o file contains the object routines which are linked into every executable Comp.

The skeleton_element.o file contains the following routines:

• process table initialization and maintenance routines

• data acquisition interface routines

• matrix manipulation routines

4.1.7 Element Installation Files

The Graphical Comp Builder generates a number of files during the Installation of an Element.

These files have different functions but all files are created in the Comp Directow.

4.1.7.1 Element C Language Source File

During an Element's installation, a C language or MOAL language source file is generated from

the Graphical Element File. The C Language Source File basename will correspond to the Element
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name. For example, the C Language Source File name for the MainPumpl Comp Element would

be: MainPump 1.c

4.1.7.2 Element C Language Object File

During an Elements's installation, a C language object file is generated from the C language source

file. This file is generated automatically by the Graphical Comp Builder Prototype during the

Installation process. This file is produced by executing the workstation's resident C compiler on

the Element's C language source file. The C Language Object File is linked into the Comp

Executable which is produced during the Comp Installation process.

4.1.8 PostScript Files

The Graphical Comp Builder Prototype currently supports only PostScript compatible printers.

The PostScript print functions access and create several PostScript files during Element printing.

4.1.8.1 PostScript Template File

The Graphical Comp Builder Prototype uses a template file which contains the functions needed

to generate a PostScript file during the printing of Elements. This PostScript Template File is

named: ps_template and is located in the Graphical Comp Builder Prototype executable's

directory. The PostScript Template File is not printed by the Graphical Comp Builder Prototype.

It is only used to build the PostScript File which is printed.

4.1.8.2 PostScript File

During the printing of an Element, the PostScript Template File is copied to the Comp Directory.

The Comp Directory copy of the PostScript Template file is then modified to include the Element

specific information. The modified PostScript file is renamed ps_file when it is copied to the Comp

Directory. The PostScript File in the Comp Directory is the file which is printed during report

generation.

4.1.9 Help Text File

The Graphical Comp Builder Prototype help system extracts help text from a disk file called

GCBDoc during execution. This disk file is located in the same directory as the Graphical Comp

Builder Prototype executable. This disk file is a standard ASCII file and may be modified with an

editor. The GCBDoc help text file contains keywords which are used by the Graphical Comp

Builder Prototype to locate the desired section of help text. The keywords in the GCBDoc help text

file correspond to the keywords in the source file: tokens.h. Any change to the GCBDoc help text

keywords or to the list of keywords in the file tokens.h, must be updated in both locations or the

help text may not be selected properly during execution. The keywords in the GCBDoc help text

file are identified by the asterisk in column 1. The GCBDoc help text file should not contain tab
characters.

4.1.10 Error Log File

The Graphical Comp Builder Prototype will generate an Error Log File if errors are detected which

should not occur during normal operation of the Graphical Comp Builder Prototype. The Error Log

File is an ASCII file which conta!ns the date and time the error occurred and a short description of

the error condition. The Graphical Comp Builder Prototype will append new error messages to the

end of the Error Log File as the errors are detected. The user may specify the location of the Error
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Log File via the User Configuration File (see the User Configuration File section on page 24 for

more information about the User Configuration File).

4.1.11 User Configuration File

The Graphical Comp Builder Prototype contains a number of features that are user configurable

during execution. The state or value of the various options will be automatically saved to a user

specific configuration file when the user exits the Graphical Comp Builder Prototype. The next

time the user executes the Graphical Comp Builder Prototype, the user's defaults will be restored

to the state or value which the user last selected.

The User Configuration File is saved as an ASCII text file. Each option is saved on a separate line

in the configuration file. Each line contains an option name followed by a corresponding value. The

Graphical Comp Builder Prototype will search several directories at the start of execution to locate

the User Configuration File. The following directories will be searched in the following order to

locate the User Configuration File:

• the current directory

• the user's home directory

The name of the User Configuration File is always: .Defaults.GCB The following options and

corresponding values are stored in the User Configuration File:

• The directory containing the Library Element GEF filzs.

• The type of Element which was last edited by the user. This option may have one of two

values: ELEMENT or LIB RARY_ELEMENT.

• The path and name of the disk file in which to write the Displayer's output.

• The name of the Comp last edited by the user.

• The name of the Element last edited by the user.

• The path and name of the Error Log file.

• The level of error log reporting. This option may be one of the following: "1", "2", or "3".

Error tog level "3" is used to specify the most verbose error reporting. Error log level "1"

is the default setting and should be used during normal operations.

• The path and name of the Object Access table.

• The path and name of the last Position in which the user was working.

• The name of the last Position in which the user was working.

• The target language for code generation. This option may be one of two values: MOAL or
C.

• The path and name of the directory containing the User Defined Functions object flies.

• The path and name of the Work Station Global table.

• The state of the Display Symbol toggle. This option may be one of two values: "1", or "0".

A value of "1"" indicates the Logic Description text should be displayed in the graphical

symbols. A value of "0" indicates the Comp Expression text should be displayed in the

graphical symbols.

saved to the User Configuration File should not end in aDirectory path values which are

terminating backslash C/").

I I
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4.1.12 Displayer Output File

The Graphical Comp Builder Prototype uses a standard "Displayer" to allow the user to view

several operations during execution. See the Displayer section on page 14 for more information on

the function of the Displayer. Each time the Displayer is presented to the user, a copy of the text

which is displayed on the screen is also written to a disk file. This file may be printed, copied, or

edited by the user. This file is created each time the Displayer is presented to the user, and the

previous copy of the file is deleted. The user may specify the location and name of the Displayer

Output File via the User Configuration File.

4.1.13 User Defined Functions Directory and Files

The Graphical Comp Builder Prototype allows the user to make calls to C language object files

which were created outside of the Graphical Comp Builder Prototype. These User Defined

Functions are located in a directory specified by the user via the User Configuration File. The User

Defined Function names must begin with "FN_". The Graphical Comp Builder Prototype will

display to the user a list of the C language object files which begin with the proper format during

the construction of IF and SET symbol expressions. The Comp Installation process will locate the

User Defined Function object files during the linking of the Comp executable.

4.1.14 Object Access Table

The Graphical Comp Builder Prototype will access an Object Access Table during the Comp

Validation process. The Object Access Table should contain a list of available Objects and their

associated data types.

4.1.15 Work Station Global Table

The Graphical Comp Builder Prototype will access a Work Station Global Table during the Comp

Validation process. The Work Station Global Table should contain a list of available Work Station

Globals and their associated data types.

-v
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4.2 Data Structures

The Graphical Comp Builder Prototype maintains a number of different data structures during

execution. The following subsections will describe the more important data structures maintained

by the Graphical Comp Builder Prototype.

4.2.1 Symbol Array

Each graphical symbol of an Element is maintained in the Symbol Array while an Element is active

in the Work Area. The Symbol Array is a fixed length array of Symbol structures. The Symbol

structure and Symbol Array are defined in gcb.h. All the information for a graphical symbol is

available via fields or pointers contained in the Symbol structure, including the following:

• The expressions contained in each graphical symbol are available via pointers in the

Symbol structure. The data space for the expressions is maUoc0'ed as needed. The Symbol

structure does not contain any data space for the expressions within the Symbol structure.

• Pointers to the connecting lines which enter and exit the Symbol are contained in the

Symbol structure. The line information is not contained within the Symbol structure. The

Symbol structure contains only pointers to Line Lists and Line structures which are

maintained separate from the Symbol structure.

• The coordinates relative to the Work Area and dimensions of the Symbol are contained in

the Symbol structure.

Almost all of the functions which manipulate the graphical symbols in the Work Area maintain the

Symbol Array of structures due to the fact that almost every aspect of each graphical symbol is

specified in the Symbol structure.

4.2.2 Cell Map

The Graphical Comp Builder Prototype utilizes a logical grid of cells as an efficient and powerful

method of maintaining the Work Area. See the Graphical Symbol Placement Model section on

page 4 for more information about the Cell Map concept.

The Work Area Cell Map is implemented as a two dimension array of Cell Structures. Each Cell

Structure contains a type flag and a pointer. The type flag indicates if the Cell is occupied and may

have one of three values: Symbol Cell, Line Cell, or vacant. If the Cell is not vacant, the pointer

will point to the graphical symbol structure or line structure which occupies the cell. The Cell

Structure definition and the double dimensioned array of Cell Structures is contained in gcb.h.

4.2.3 Line Structures

The Graphical Comp Builder Prototype allows the user to logically connect the graphical symbols

in the Work Area. The Element builder determines the program flow of the Element by the manner

in which the graphical symbols are connected. A collection of structures are maintained by the

Graphical Comp Builder Prototype to record the logical lines which connect symbols. There are

three main Line Structures which are maintained by the Graphical Comp Builder Prototype
software:

• The LineSeg structure is the most basic element of the connecting lines between symbols.

A LineSeg structure maintains the information for a single line segment from one point to

another point. A logical connecting line between two graphical symbols may be composed

of multiple line segments. Each orthogonal change in direction starts another line segment.
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Each LineSeg structure contains a pointer to the next segment in the logical line if one

exists. Each LineSeg structure contains the information needed to draw the line, including

the information to draw the line segment's arrow head if one is at the end of the line

segment.

• The Line structure represents a logical connecting line between two graphical symbols.

Each Line structure contains a pointer to the first line segment of the logical line. The

remaining segments of the logical line are available via a pointer in the LineSeg structure

which points to the next line segment in the logical line. Each Line smacture also contains

a pointer to the two graphical symbol entries in the Symbol Array which the line connects.

• The LineList structure represents a list of separate logical lines. The LineList structure is

the highest level line structure. Each LineList structure contains a linked list of pointers to

logical Line structures. LineList structures are used to record the list of lines which enter a

graphical symbol. Each symbol may have only one or two lines which exit the symbol, but

many logical lines may enter a symbol, and the LineList structure is used to record each of

these lines.

Each of the three Line Structures also includes a key field. The key field is used to record the line

information of an Element File to disk and to restore an Element's lines during the reading of an

Element File from disk. The key field of each structure is set to a unique number before an Element

File is written to disk. The unique numbers in the key fields are then used to reconstruct the

interwoven network of pointers during the reading of an Element File from disk.

The various Line Structures are dynamically allocated as needed to maintain the Element in the

Work Area. The Line Structures are defined in gcb.h.

4.2.4 Symbol Table

The Graphical Comp Builder Prototype maintains a Symbol Table of the identifiers and variables

which comprise the expressions within the graphical symbols of a Comp. The following entities

are maintained in the Symbol Table for each Comp:

• The name of each Element which comprises the Comp is maintained in the Symbol Table.

• The name of each local variable within an Element is maintained in the Symbol Table.

• The name of each global variable within a Comp is maintained in the Symbol Table.

• The name of each Object and each Work Station Parameter is maintained in the Symbol
Table.

The name of each User Defined Function and the name of each intrinsic function (cos, tan,

sqrt, etc.) is maintained in the Symbol Table. The Symbol Table contains an entry for every

intrinsic function, even if it is not referenced in the Comp. Only the names of the User

Defined Functions which are referenced within a Comp are maintained in the Symbol
Table.

The Symbol Table contains the following information about each entry:

• The name of each symbol is maintained in the Symbol Table.

• The use count of each symbol is maintained within the Symbol Table. The use count is a
count of the number of times each variable or Element name is referenced within all of the

Elements of the Comp.
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• The attributes of each symbol are maintained within the Symbol Table. The attributes field

is implemented as a collection of bit masks. The bits in the attributes field of a Symbol

Table entry indicate various information including: variable data type and variable scope.

The Installation status of Elements is also maintained in the attributes field of the Symbol

Table entry.

• The number of rows and columns of non-scalar variables is also maintained in the Symbol
Table.

A list of local variables is maintained for each Element name. The local variables of an Element

are maintained as a list of children of the Element. In this way, the local variables of an Element

are tied to the Element. Different Elements within a Comp may have local variables of the same

name. Each time a local variable is accessed in the Symbol Table, the name of the Element in which

the local variable is def'med is supplied to ensure the correct local variable is accessed.

Global variables are maintained in the root of the Symbol Table and have no parent due to the fact

that global variables can be accessed from any Element within a Comp.

The Comp Symbol Table is implemented as a linked list of structures. The Symbol Table Structure

definition is contained in symbol.h.
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4.3 GCB Program Flow

A high level program flow diagram for the Graphical Comp Builder Prototype is contained in the

figure below:

Section I

Section 2 Section 3

At this level, the program flow appears to be very simple due to the program structure that is typical

of X Windows and Motif based applications. There are only three main areas of program flow

within most X Windows programs and the Graphical Comp Builder Prototype is no exception. The

three main areas of program flow and their function are:

• The first section of a typical X Windows program contains the establishment of the
connection to the X Windows server and the definition of the X-based user interface.

• The second section of a typical X Windows program is the main X Windows event loop.

This code is usually linked into the application and is not written as part of the application.

The X Windows event loop sends and receives events to and from the X Windows server.

The X Windows event loop is called at the start of the application and remains in control

of the application until the program is terminated. The X Windows event loop will call
various callback routines based on the events which occur in the X server.

I I
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• The third section of a typical X Windows program contains the callback routines. This

section of code is where most application specific processing is performed. The majority of

the Graphical Comp Builder specific software is contained within callback routines or is

called by the callback routines.

Each X Windows program usually contains these three sections of code. The relative size and

complexity of these three sections varies between applications. In the case of the Graphical Comp

Builder Prototype, the callback routines section of the application comprises approximately 90%

of the software in the Prototype. The following two sections will describe in greater detail the first

and third sections (initialization and callback routines). The second section is generic to all X

Windows applications and is not specific to Graphical Comp Builder Prototype. The reader is

referred to the X Windows documentation for more information about the second section.

4.3.1 Section 1 - Initialization

The Initialization Section of the Graphical Comp Builder Prototype comprises approximately 10%

of the code in the Prototype. The initialization routines perform the following functions in the
following order:

• The Initialization routines contained in gcb.c setup a collection of signal handlers to trap

desired Unix OS events. The Control-C signal is an example of the signals which are
trapped.

• The Initialization routines contained in gcb.c establish a connection to the X server and

open the X Display.

• The Initialization routines contained in init_X.c construct the X Windows interface. The

Graphical Comp Builder Prototype builds all main windows and popup windows during
initialization.

• The Initialize routines contained in init_vars.c and utils.c initialize all global variables,

including the graphical symbol array and the Work Area cell map. The Initialize routines

also read the user's Configuration File and set the variables identified in the User

Configuration File to the specified values.

4.3.2 Section 3 - Callback Routines

The X Windows callback routines and the routines called by the callback routines, comprise about
90% of the code in the Graphical Comp Builder Prototype. Due to the event driven nature of an X

Windows based application, these callback routines are only called as the result of a user's action

within the X Windows interface. Almost every trace of a sequence of events within the Graphical

Comp Builder Prototype begins in the source file: init_X.c. It is within this file that the majority of
the interface is defined and the event handlers installed.

The following is an example of the sequence of events and the typical program flow that occurs

during most operations performed by the user within the Graphical Comp Builder Prototype. The

following example shows the sequence of events and the program flow that occurs when the user

selects and reads in an existing Element file.
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Event Resulting Program Flow

User selects the

Element menu.

User selects the

"Select Element"

menu button.

User selects an

Element name

from the list.

The Element pulldown menu is displayed. This menu

was defined during the building of the user interface.

The callback routine cbr_elem_popup0 was installed

during the building of the user interface for this event

and is called.

The callback routine cbr_elem_popup0 makes a call to

load_element list0 to load the Element selection list

of the "Select Element" popup before the popup is

displayed.

The load_element_list() routine makes a call to

read_comp_list0 to read the list of Element names

from the Comp file.

The callback routine cbr_elem_popup0 makes a call to

display tile "Select Element" popup to the user.

The "Select Element" popup is displayed to the user.

The "Select Element" popup was defined during the

building of the user interface in init_X.c. A call was

made from init_X.c to build_sel_elem_popup0 in

element_file.c to build the "Select Element" popup

during the initialization of the user interface.

The callback routine for the Element selection list is

called. The callback routine cbr el selected() was

installed when the "Select Element" popup was built in

build sel elem_popup0.

The callback routine cbr el selected0 determines the

name of the Element the user wants to read and then

makes a call to read_element_file0 to read the

specified Element file from disk in::o the Graphical

Comp Builder Prototype.

Once the Element file has been read from disk, control

returns to the X Windows main event loop and the

cycle begins again.

Source

File

init_X.c

init_X.c

element_file.c

comp_file.c

element_file.c

popup built in

element_file.c

element_file.c

element_file.
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The preceding scenario is typical of each operation the user performs within the Graphical Comp

Builder Prototype. For each operation the main program flow is basically the same.
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Extract

This comp is performed during the
extraction of the HAB satellite

from the payload bar. This comp

will monitor the status of the

RMS pumps to make sure they remain
within nominal and critical limits.





Elements

CheckPumpl

CheckPump2

Installed

yes

no

Global Variables

V873457E

GV cont

int

int

Dimensions Use Count

2

2

Page i





Position:

Comp:

Element Name:

Element Type:

Author:

Created:

Last Update:

Status:

RMS Purpose :

Extract This element sets up a loop which

RootElement tests the two main pumps which

drive the RMS. The loop continue

ELEMENT flag is not altered within this

Timothy J. Barton Comp. The user can control the

Comp from the Comp Manager.
08/25/1991

08/27/1991

Complete

I I

TRUE
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Logical

Description

continue until the
!extraction finishes

Comp

E _ession

GV cont := 1

Comment Initialize the loop control variable to be TRUE. This loop
should run forever. This comp is stopped by the user via
the Comp Manager once the extraction has been completed.
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gical check the continue flag.

:scription

GV cont > 0

3mment Check to make sure we should 'go around' and perform
the tests again.
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Position:

Comp:

Element Name:

Element Type:

Author:

Created:

Last Update:

Status:

RMS

Extract

CheckPumpl

ELEMENT

Jerry Rather

08/27/1991

08/27/1991

Complete

Purpose:

This element checks the Pumpl
pressures. This element checks
the critical high and critical
low limits. This element is

set up to check for Rev. 2 type
pumps

<Z9

i,
r_m

_pL D,,,,.,, cr_,,_L hLg.

I

>S z''::'°......*_" I
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Logical Check Pumpl pressure high limit.

Description

Comp

F ression

V873457E > 125

Comment Check to see if the Pumpl pressure has exceeded the critical
high limit. The high limit for the ?ev. 2 pumps used on

Columbia and Discovery is 125 psi.

The Rev. ! pumps have critical high limit of 115 psi.

Page 6



¸-...-.I



Logical Check Pumpl pressure low limit.

Description

2omp

Ey ession

V873457E < 40

)mmenE Check to see if the Pumpl pressure has gone below the

critical low limit. The low limit for the Rev. 2 pumps

used on Columbia and Discovery is 40 psi.

The Rev. 1 pumps have critical low limit of 60 psi.
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Position:

Comp:

Element Name:

Element Type:

Author:

Created:

Last Update:

Status:

RMS

Extract

CheckPumpl

ELEMENT

Jerry Ratner

08/27/1991

08/27/1991

Complete

Purpose:

This element checks the Pumpl

pressures. This element checks
the critical high and critical
low limits. This element is

set up to check for Rev. 2 type

pumps
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Ada User's Symposium

1.0 Investigation of Ada for Control Center Software

Investigation has been conducted to determine the availability and suitability of the Ada

programming language for the development of future control center type software. The Space

Station Freedom Project (SSFP) has identified Ada as the desired programming language for the

development of Space Station Control Center (SSCC) software systems. The Department of

Defense (DoD) has mandated Ada as the programming language for all new DoD software. Due

to these mandates and related directions within private industry, an investigation of Ada was

necessary.

1.1 Ada User's Symposium

The first step in the investigation into Ada was to determine if the Ada programming language was

receiving acceptance within NASA. The Ada programming language had a well publicized birth

and was purported to be the High Order Language (HOL) of the 1980s and 1990s. During the last

several years, Ada has received less publicity. It was important to determine if Ada was slipping

into obscurity or quietly gaining acceptance, before significant effort was expended using Ada. The

f'mst step was to determine if it was still appropriate to develop an Ada version of the Graphical

Comp Builder.

The NASA Ada User's Symposium was the ideal event to determine NASA's commitment to Ada.

The presenters' experiences with current Ada compilers also provided data on the ability of Ada

compilers to produce a Graphical Comp Builder Prototype with acceptable performance.

The Third Annual NASA Ada User's Symposium was held at NASA-JSC's Gilruth Center on

November 6, 1990. The Ada Symposium directly answered the two main questions about Ada:

• Is Ada gaining acceptance?

• Will Ada executable's performance be acceptable?

The first question was answered immediately. The first hour and a half was a discussion about the

Ada projects at the various NASA centers. Representatives from Goddard, JPL, Langley, JSC, and

LeRC (Lewis Research Center) discussed the various projects using Ada and the Ada development

labs at their respective center. A short summary of these projects is included.

The second question was answered through the course of the entire day. The symposium was not

just a group of Ada fanatics who are oblivious to the merits of C and FORTRAN and who think

that Ada should be used in every piece of software that is written. Almost all of the presenters

discussed the development and performance impacts caused by using Ada in their project instead

of FORTRAN. In most cases, a performance comparison table to FORTRAN was presented which

clearly indicated the performance of the Ada version. The audience and the presenters were very

objective and very honest in their discussions about Ada.

1.1.1 NASA Center Status Reports

The first part of the symposium was a status report from the following NASA centers:

• Johnson Space Center

• Goddard Space Flight Center

• Langley Research Center

° Lewis Research Center

Jet Propulsion Laboratory
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• JSC

A short description of the projects at each center is included.

1.1.1.1 JSC

Most of the Ada work being clone at JSC is in the SSCC and SSF Training Facility. The SSE which

is being done by Lockeed is all in Ada and they are projecting that 1 million lines of Ada will be

written before SSE is completed. OADP and OPAS are two projects within the SSCC that are using

Ada. Some other projects at JSC are:

• STA- Shuttle Training Aircraft

• COMPASS - Computer Aided Scheduler

• SMSS - F16 Stores Management System Simulator

• JAEL - JSC Avionics Engineering Lab

The JSC campus HVAC system is computer controlled using Ada.

1.1.1.2 GSFC

The Flight Dynamics Division at Goddard is using Ada very extensively. In 1984 less than 1% of

all software developed at Goddard was in Ada. They estimate that more than 10% of all software

developed in 1990 at Goddard will be in Ada. Goddard is probably the most committed of the

NASA centers to Ada and they have extensive statistics to prove their move to Ada. The big

projects at Goddard are:

• FTS - Flight Telerobotic Servicer - all software in Ada

• STGT - Second TDRS Ground Terminal - all software in Ada

• HST - Hubble Space Telescope interface simulator

• EUVE - Extreme Ultraviolet Explorer - spacecraft flight software

1.1.1.3 LaRC

Some of the projects at Langley are:

• CSI- Control Structures Interaction - shuttle bay instrumentation platform

• AFE- Aeroassist Flight Experiment

Langley is very big on Ada because they usually have very short turn-around times for their

projects and they have found that Ada is faster to develop in than FORTRAN due to high reuse of
software. It takes a software engineer longer to write an Ada module than a FORTRAN module,

but the Ada module is often reused on other projects, whereas the FORTRAN modules are often

rewritten due to the tighter coupling of the module to the particular program.

1.1.1.4 LeRC

The Electrical Systems Division of Lewis Research Center is building the Power Management and

Distribution controller for SSFP. All the code in the Power Management system is in Ada and they

are very pleased. As an example, the power on the SSF recently changed from AC to DC, and the

Lewis software developers were very pleased with the maintainability of their Ada software.
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1.1.1.5 JPL

JPL is one NASA center where very little Ada work is going on. JPL is not using Ada due to several

factors. The staff at JPL feel there are not enough people with Ada experience so they see Ada as

a risk item. JPL probes have had great success and they are afraid to abandon FORTRAN and

assembler. The developers at JPL view Ada as big and slow, and their probes are small and have

limited resources.

1.1.2 Symposium Speakers

The rest of the day, was devoted to speakers from the various NASA centers discussing their

particular project in detail. A summary of some of the projects that were discussed is included.

1.1.2.1 STGT - Second TDRS Ground Terminal

This is a very large real-time project (12 VAX 63XX and 28 workstations) being done by General

Electric (GE). They estimate that 490,000 lines of Ada will be written before STGT is completed.

GE is very impressed with Ada's ability to aid in the management and development of a large

software project. STGT is being completed ahead of schedule and it works. One of Ada's strengths

in GE's opinion, is the reusability of Ada code. During development of one portion of STGT,

30,000 lines out of 90,000 total lines of Ada were reused from another portion of STGT. For one

of the simulators, 16 were developed in all, Ada required 5,000 lines of code whereas 40,000 lines

of FORTRAN were needed to write the same exact simulator.

1.1.2.2 STA - Shuttle Training Aircraft

NASA-JSC has a Gulfstream airplane which can be computer controlled to fly like the shuttle

below 35,000 feet. STA is used by pilots to practice shuttle landings and descent. STA uses Sperry

and Motorola processors in its Guidance Control Computer (GCC) to control the wing surfaces and

engines to enable the Gulfstream to exhibit shuttle-like flight characteristics. The STA was

originally programmed completely in assembly language. Most of the software has been converted

to Ada, and soon all of the code will have been converted to Ada. This project has extensive timing

data comparing FORTRAN to Ada. Not surprisingly, FORTRAN is faster than Ada, but only about

15% faster. The group which is responsible for STA feel that their Ada programs are definitely

much easier to develop and maintain. Their theory is: software is expensive, hardware is cheap,

buy fast enough hardware to support the proper software development environment (Ada) and

you'll save money. The STA group
extensions to Ada.

1.1.2.3 JAEL

The JSC Avionics Engineering Lab
hardware:

uses Ready Systems ARTX Real-Time Executive and

(JAEL) is responsible for testing the shuttle's avionics

GPC- General Purpose Computers

MDM- Multiplexor Demultiplexor

MTU- Master Time Unit

MCDS- Multi-purpose Display System

Even though this group is shuttle related and has no Ada mandate, they now use Ada for all their

development because they have had "good past experiences" with Ada. They feel Ada has helped

them deliver their systems on-time as opposed to FORTRAN.
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1.1.3 General Highlights

The following are some short excerpts from the symposium:

• The SSFP has been losing a lot of money for various projects through "scrubs" lately,

but Ada and projects using Ada have fared very well.

• Interestingly, Ada was always compared to FORTRAN during the symposium. The C

language was only mentioned once or twice.

• Many of the embedded system projects utilize the military's 1750A microprocessor.

There were several very positive comments regarding the Ada development

environments available for the 1750A microprocessor.

• Many of the real-time projects used run-time environments to improve real-time

performance and these environments provide additional interprocess communication

mechanisms other than the Ada rendezvous.

1.1.4 Non-NASA Highlights

The following are several short excerpts from the symposium regarding projects outside of NASA:

• There are over 500 validated Ada compilers.

• The B2 (stealth bomber) trainer was developed entirely in Ada by Link, and the Boeing

747-400 contains approximately 500,000 lines of Ada in its fly-by-wire control

systems.

• Much of the software in the Sea Wolf ASW missile was written in Ada.

• Volvo has completed several projects using Ada including all of the software to control

their assembly plant Automatic Guided Vehicles (AGV).

• On Monday, November 5, 1990, Congress signed legislation which states that the

Secretary of Defense must now sign waivers if Ada is not going to be used on a military

project. Waivers will only be granted if it can be demonstrated that another language

will be more cost effective over the entire life-cycle of the project. Ada has done very

well in the past in software life-cycle cost studies, and the new legislation may increase

the number of DOD projects which use Ada.

1.2 Hartstone Benchmark

The second step in the investigation of Ada focused on the relative performance of Ada programs

on two workstations often used in control center environments. The Graphical Comp Builder

Prototype is a very user interactive program. The ability of the program to respond quickly to user

actions is paramount to the program's acceptance by users. The performance of the Graphical

Comp Builder Prototype is most critical during graphical symbol placement in the large work area.

The C language version of the Graphical Comp Builder Prototype has been designed and

implemented to ensure smooth response to mouse movements in the work area. An Ada version of

the Graphical Comp Builder Prototype will have to perform symbol placement operations with

equally acceptable performance.

The Hartstone Benchmark is being utilized to provide information regarding the performance of

the executables produced by various Ada compilers. The Hartstone (Hard Real Time) Benchmark

is an Ada program designed by the Software Engineering Institute (SEI) for the USAF which is

used to measure a computer system's ability to support a collection of real-time tasks. The
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Hartstone Benchmark is primarily intended to provide information about a system's ability to

perform real-time tasks and about the performance of the executables produced by different

compilers for the same system. The Hartstone Benchmark can also provide information regarding

the ability of two different systems (for example, a Masscomp and a Sun) to perform the same

system load. To date, the latter type of information has been gathered due to the availability of only

one Ada compiler for either the Sun or Masscomp. Should a second Ada compiler become

available for either the Sun or Masscomp, then comparison data of executables on the same system

will be provided.

1.2.1 Hartstone Benchmark Design

The Hartstone Benchmark is comprised of a series of 4 experiments which are designed to test a

different aspect of a real-time system. Each experiment utilizes a minimum of 5 Ada tasks which

must perform a specified amount of computation within a given time period. The priority and time

period of each of the 5 tasks and the number of tasks are varied in the different experiments to

measure a different aspect of system performance. Each of the experiments uses a variant of the

Whetstone benchmark to produce and measure system load during the tasks time period. The 4

experiments which comprise the benchmark are numbered 1-4 and they are designed to test the

following aspect of the system:

• Experiment 1 gradually increases the frequency of the highest priority task. Experiment

1 is an indicator of a system's task switch overhead. As the time period of the high

priority task is decreased, the amount of task switches increases and consequently the
task switch overhead.

• Experiment 2 gradually increases the frequency of all 5 tasks uniformly. Each of the 5

tasks must complete a set amount of computational work in an ever decreasing time

period. Experiment 2 is an indicator of a system's ability to task switch a collection of
tasks.

• Experiment 3 gradually increases the computational work (number of Whetstones)

which must be completed within a set time period. Experiment 3 is an indicator of a

system's compute performance for a set time period.

• Experiment 4 gradually adds new tasks to the system. Experiment 4 is an indicator of a

system's ability to support an increasing number of tasks.

Each experiment is terminated when any of the tasks begin to miss their deadlines (allotted time

period) for completing their assigned computational work load. In each Experiment, either the

frequency or computational work load of the tasks is increased until a deadline is missed.

1.2.2 Sun vs. Masscomp Comparison

NASA-JSC control center operations and development environments are dominated by either

Concurrent Computer Corporation (Masscomp) or Sun Microsystems workstations. The Hartstone

Benchmark suite was tested against these two machines to provide information towards whether

either of the Ada environments on these machines was suitable for implementation of an Ada

version of the Graphical Comp Builder Prototype. The X Windows bindings which are needed to

implement the Graphical Comp Builder Prototype are not currently available to the research team.

The Hartstone Benchmark is being used to determine on a general scale the performance

characteristics of Ada executables on a Masscomp and a Sun.
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The Hartstone Benchmark was executed on a Masscomp 6350 and a Sun 4/65 (SPARC Station 1+).

Both machines are mid-level Unix workstations from the product lines of their respective

manufacturers. The two workstations which were benchmarked share many of the same features:

• Unix-based workstation

• 16 megabytes of memory

• X Windows support

• SCSI peripherals (hard drive, tape drive, floppy drive)

• networked via ethernet (NFS and NIS client)

The two workstations are also very different in some respects. Due to the nature of the real-time

Hartstone Benchmark, the Real-Time Unix (RTU) of the Masscomp would typically be a benefit

when compared to the Sun's version of Unix (SunOS). The Hartstone Ada source code has been

written with portability as a prime objective so the RTU real-time directives available to an Ada

program were not employed. Only the real-time features implicitly utilized in RTU were

employed. The following are some of the other differences between the two workstations:

• RISC based Sun (SPARC) vs. CISC based Masscomp (68030)

• desktop Sun (single system board employing high integration, i.e. memory) vs.

deskside Masscomp (multiboard system, i.e. separate memory and graphics boards)

• Verdix Sun Ada compiler vs. Masscomp C3Ada compiler

The resulting benchmark results have been interpreted in a very general fashion to make

allowances for the differences in the two workstation's hardware and operating system software.

The results given in this report will be general statements based on the interpretation of the average

results of the benchmark. The authors of the Hartstone Benchmark are quick to point out the fact

that a large number of independent variables affect the results of the benchmark, and that the data

produced by the benchmark should be used to demonstrate the variations that are possible. The

specific Hartstone Benchmark results should only be directly compared in situations where most

independent variables can be controlled. For this report, a direct comparison is not feasible. For

both workstations, the results could be either improved or degraded with optimization and tuning

for the particular workstation, use of the RTU real-time features within the C3Ada compiler are an

example.

1.2.3 Hartstone Benchmark Results

The complete reports produced by the Hartstone Benchmark for both the Sun and the Masscomp

are included in Appendix E of this report and a summary of the results is included in Figures 1, 2,

3 and 4. Where possible, the machines were configured as similarly as possible. Each machine was

configured as follows during the execution of the benchmark:

• multiuser mode

• benchmark was executed as "root"

• disconnected from ethernet

A single copy of the Hartstone Benchmark source code was used to build each respective

executable. The complete set of experiments (1-4) was executed 3 times for each machine. The

results of each 3 runs are included in the table in the order in which they were run.

,_.j
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The Hartstone Benchmark was executed on both machines using the same baseline test; in each

Experiment the same amount of computational workload was requested during the f_st test and

subsequent increments in workload were also the same for the two machines. Several general

observations can be made which are valid for all four of the experiments:

• Due to the controlled environment in which the experiments were conducted, the results

for each three runs of each experiment were very close if not exactly the same. Slight

variations are expected due to occasional system functions such as system clock and

"cron" tasks. The very narrow variations exhibited in most experiment results is an

indication of very few external factors affecting the experiment results.

• The more recently developed RISC microprocessor used in the Sun delivers better raw

compute performance than the older CISC in the Masscomp. In the tables included in

Figures 1-4, the right most column identifies the number of Whetstones which were

calculated by one task in one second at the start of the experiment. This number is

identified as "raw KWIPS". The number of KWIPS completed by a collection of tasks

should never exceed this raw value due to task switch overhead. The Masscomp

consistently computed approximately 2000 Whetstones a second. The Sun consistently

computed approximately 4400 Whetstones a second, more than double the number

computed by the Masscomp. The "raw KWIPS" value is used as the basis for 100%

utilization. Each experiment compares the performance of multiple tasks against this

single task baseline.

• The greater compute performance of the Sun ensures a finer scale in reporting of

performance for the Sun than the Masscomp. This is evidenced by the "step factor"

which is identified for each experiment in Figures 1-4. The "step factor" identifies at

which rate the system load is increased in each subsequent experiment test. During the

execution of the benchmarks, the initial load and all subsequent compute loads added

during the experiments was the same for both the Sun and the Masscomp. Due to the

Masscomp's lower performance, the new loads added to the Masscomp were a greater

burden than to the Sun. The "step factor" identifies the ratio of loading between the

Masscomp and the Sun. The "step factor" is computed by dividing the "raw KWIPS"

(100% utilization) by the compute load "KWIPS". The "step factor" for the Sun was

consistently 1/2 that of the Masscomp due to the greater raw compute performance.

• Due to the differences in compute performance and the resulting differences in "step

factor", the number of tests completed by each machine may not be directly compared

in some cases. The Sun is expected to complete more tests due to the greater raw

compute performance and the finer loading factor. In cases where the number of tests

completed in an experiment are very close for the Sun and Masscomp, it can be

suggested that the Masscomp's software (Ada compiler an_or OS) is more efficient at

performing the type of test targeted by the experiment. This is due to the fact that it has

less raw compute performance available to perform the test. In cases where the

variation in the number of tests completed is great, other factors may be studied to

determine the nature of the test. The "percent CPU" loading indicator may be used in

these cases to determine if the Masscomp is performing as expected when compared to
the Sun.

I
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These factors should be kept in mind when studying the Hartstone Benchmark results. Given the

preceding backdrop, the following observations have been made:

* Experiment 1 is a good indicator of a system's ability to task switch five tasks with one

task increasingly adding task switch overhead. The fifth task gradually increases its

frequency as its time period decreases. In this experiment, the Masscomp delivered

similar performance to the Sun even though it has less raw compute performance. This

may indicate that for the task set in Experiment 1 the Masscomp's Real-Time Unix is

an advantage over Sun OS and other BSD Unix implementations even when RTU's

explicit real-time features are not utilized. Investigation of Experiment 3 would indicate

the opposite is true. For the task set in Experiment 3, the Sun delivered much better

performance when compared to the Masscomp.

o The results of Experiment 1 for the Masscomp and the Sun are consistent with the

findings often observed at the SEI; the highest priority task (task number 5) misses

deadlines before the lower priority tasks. Both the Masscomp and Sun missed deadlines

in task 5 in Experiment 1. Due to the priorities assigned by the Hartstone Benchmark,

the opposite scenario should be the case. The lower priority tasks should miss their

deadlines first as they are increasingly preempted by higher priority tasks. The SEI is

currently researching the cause of the "Inverted Task Set Breakdown Pattern" which

was exhibited by both the Sun and Masscomp.

. The Masscomp and its RTU operating system produced very good CPU utilization

figures when compared to the Sun for the Experiment 1 task set. The Masscomp

consistently delivered approximately 17% CPU utilization as compared to the Sun

which delivered approximately 8% CPU utilization.

* The Masscomp also performed very well in Experiment 2. Once again, the Masscomp

delivered a much higher CPU utilization before deadlines were missed. Although the

Masscomp delivered higher CPU utilization, the Sun delivered higher performance

given its greater compute performance from its RISC microprocessor.

* The Sun performed exceptionally well during Experiment 3 when it achieved 4102

KWlPS, or approximately 90% of CPU utilization. The Sun also displayed a very even

distribution of tasks which missed their deadlines as the system was loaded. In

Experiment 1, both the Masscomp and the Sun missed deadlines in the highest priority

task. This is not the behavior which is expected or desired. As the load on the Sun

increased during Experiment 3, the lower priority tasks began to miss deadlines while

the higher priority tasks missed very few or no deadlines. The task set used in

Experiment 3 appears to be very well suited for the Sun.

o There were few surprises in the results of Experiment 4. Once again, the Masscomp

delivered very good CPU utilization. Once again, the faster Sun CPU delivered higher

performance than the Masscomp. As in Experiment 3, the Sun delivered very good

distribution of missed deadlines across lower priority tasks as the system was loaded.

As the Masscomp CPU was loaded, it did very poorly in distributing missed deadlines

across lower priority tasks. In the last test attempted by the Masscomp, the highest

priority task was the only task to miss deadlines.

The Hartstone Benchmark has provided insights into the relative strengths and weaknesses of the

two hardware and software systems tested. The Hartstone Benchmark clearly showed the compute
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performance of the Sun and the effectiveness of the real-time features implicitly available in the

Masscomp's RTU. The Hartstone Benchmark also clearly showed how the two systems are very

effective for certain experiments and less effective for other experiments. The Hartstone

Benchmark is an excellent foundation for research into the real-time performance of Unix-based
workstations.
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Masscomp

Sun

Hartstone Benchmark

Experiment 1 - Last test with no missed/skipped deadlines

Test # Percent CPU Task5 Freq. Step Size KWIPS(raw)

16.32%

16.32%

15.31%

7.86%

7.17%

7.15%

32Hz

32Hz

32Hz

48Hz

32Hz

32Hz

1.63%

1.63%

1.53%

.71%

.72%

.71%

1960.79

1960.79

2090.62

4476.28

4464.29

4476.28

Masscomp

Sun

Experiment 1 - First test with missed/skipped deadlines

Test # Percent CPU Task5 Freq. Step Size KWIPS(raw)

3

2

2

17.95%

17.95%

16.84%

8.58%

7.88%

7.86%

48Hz

48Hz

48Hz

64Hz

48Hz

48Hz

1.63%

1.63%

1.53%

.71

.72

.71

1960.79

1960.79

2090.62

4476.28

4464.29

4476.28

Masscomp

Sun

Experiment 1 - Test with 50 or more missed/skipped deadlines

Test # Percent CPU Task5 Freq. Step Size KWIPS(raw)

2

2

2

3

3

3

I7.95%

17.95%

16.84%

8.58%

8.60%

8.58%

48Hz

48Hz

48Hz

64Hz

64Hz

64Hz

1.63%

1.63%

1.53%

.71

.72

.71

1960.79

1960.79

2090.62

4476.28

4464.29

4476.28

Figure I

Page 10 Ada Investigation



Hartstone Benchmark

Masscomp

Sun

Experiment 2 - Last test with no missed/skipped deadlines

Test # Percent CPU

2 17.48%

3 19.58%

3 18.50%

7

6

6

11.73%

10.72%

10.72%

KWIPS

352

384

384

512

480

480

Step Size

1.59%

1.63%

1.54%

.73%

.71%

.71%

KWIPS(raw)

2013.42

1960.79

2076.11

4364.91

4476.28

4476.28

Masscomp

Sun

Experiment 2 - First test with missed/skipped deadlines

Test #

1

4

2

2

1

3

Percent CPU

15.89%

21.22%

16.95%

8.06%

7.15%

8.58%

KWIPS Step Size

320

416

352

352

320

384

1.59%

1.63%

1.54%

.73

.71

.71

KWlPS(raw)

2013.42

1960.79

2076.11

4364.91

4476.28

4476.28

Masscomp

Sun

Experiment 2 - Test with 50 or more missed/skipped deadlines

Test #

4

4

4

8

8

8

Percent CPU KWIPS

20.66% 416

21.22% 416

20.04% 416

12.46%

12.15%

12.15%

544

544

544

Step Size

1.59%

1.63%

1.54%

.73

.71

.71

KWIPS(raw)

2013.42

1960.79

2076.11

4364.91

4476.28

4476.28

Figure 2
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Masscomp

Sun

Experiment 3 - Last test with no missed/skipped deadlines

Test # Percent CPU KWIPS Step Size KWIPS(raw)

55

58

58

35.29%

31.29%

39.03%

84.84%

86.10%

86.33%

692

630

816

3668

3854

3854

3.16%

3.08%

2.97%

1.43%

1.39%

1.39%

1960.79

2013.42

2090.60

4323.39

4476.28

4464.29

Masscomp

Sun

Experiment 3 - First test with missed/skipped deadlines

Test # Percent CPU KWIPS Step Size KWIPS(raw)

3

3

10

2

10

8

22.64%

22.05%

42.00%

8.84%

19.61%

16.89%

444

444

878

382

878

754

3.16%

3.08%

2.97%

1.43%

1.39%

1.39%

1960.79

2013.42

2090.60

4323.39

4476.28

4464.29

Masscomp

Sun

Experiment 3 - Test with 50 or more missed/skipped deadlines

Test # rercent CPU KWIPS Step Size KWIPS(raw)

9

8

12

62

62

62

41.62%

37.45%

47.93%

94.88%

91.64%

91.88%

816

754

1002

4102

4102

4102

3.16%

3.08%

2.97%

1.43%

1.39%

1.39%

1960.79

2013.42

2090.60

4323.39

4476.28

4464.29

Figure 3
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Masscomp

Sun

Hartstone Benchmark

Experiment 4 - Last test with no missed/skipped deadlines

Test # Percent CPU Tasks Step Size KWIPS(raw)

3

8

13

33

34

34

22.25%

39.17%

52.04%

52.90%

54.33%

54.33%

7

12

17

37

38

38

3.18%

3.26%

3.06%

1.43%

1.43%

1.43%

2013.42

1960.79

2090.60

4476.28

4476.28

4476.28

Masscomp

Sun

Experiment 4 - First test with missed/skipped deadlines

Test # Percent CPU Tasks Step Size KWIPS(raw)

4

1

8

25.43%

32.64%

18.37%

11.44%

7.15%

17.16%

8

10

6

8

5

12

3.18%

3.26%

3.06%

1.43%

1.43%

1.43%

2013.42

1960.79

2090.60

4476.28

4476.28

4476.28

Masscomp

Slln

Experiment 4 - Test with 50 or more missed/skipped deadlines

Test # Percent CPU Tasks Step Size KWIPS(raw)

10

15

17

36

36

36

44.50%

62.02%

64.29%

57.19%

57.19%

57.19%

14

19

21

40

40

40

3.18%

3.26%

3.06%

1.43%

1.43%

1.43%

2013.42

1960.79

2090.60

4476.28

4476.28

4476.28

Figure 4
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I I

Introduction

NASA _s about to embark on the development of millions of line of software for the Space Station

Control Center (SSCC) and the Space Station Training Facility (SSTI:3. The C programming

language was used in the development of the Mission Control Center Upgrade (MCCU). Reuse of

the MCCU software is a goal if possible, but the long life cycle of the Space Station wit also

influence the development of Space Station software. Ada is a language which was designed for

long life cycles and would appear to be ideal for Space Station type applications, but general

perceptions have been that Ada is a risk factor when compared to C for several reasons. This paper

has been written to provide input to the question of which language to use for the SSCC and SSTF.

Due to the brief nanu'_ of this investigation, an in-depth performance benchmarking of the

languages was not possible. These same time constraints did not permit an in depth study of all

SSCC andSSTF applications which would be affected by the C versus Ada question. This paper

will instead focus on more general discussions of the two languages and will focus on the

applications with which the researchers have the most "hands on" experience. These applications

an: specifically the MCCU workstation applications.

The information presented in this paper is mostly the result of case studies. These case studies

provide excellent information because they ar_ the resulm of projects with experience using the two

languages. The following case studies have provided significant input into the recommendations

of this paper:.

• Lockheed in Austin, Texas, is currently completing a large (30 programmers, 240,000

Aria statements) Ada effort. This effort is of special significance because it is being

completed on Masscomp Unix workstations. This effort is also significant because

approximately only l-in-5 programmers actually knew Aria at the start of the project.

This effort incorporates a large number of COTS products. This effort is especially

significant because a related comparable project is being done in C concurrent to the
Ada effort.

• SwRI is cun_nfly using Ada in the implementation of the Combined Arms Service

Trainer (CAST). This project is relevant due to the number of experienced C

programmers which arc now using Ada in the development of CAST. This effort is

using 80386 PCs as their development and target hardware platform.

* The experiences of the Flight Dynamics Division (FDD) at Goddard Space Flight

C.¢nter have also provided information for this paper. The experiences of the FDD are

of special significance because they have been gathered over almost 6 years and they

are mostly from projects implemented on mainframes and minicomputers.

Various other case studies have provided information for this paper. The experiences of the Shuttle

Training Aircraft (STA) and the Second TDRSS Ground Terminal (STGT) arc some of the other

case studies used in the preparation of this paper.

These case studies and information gathered from recent publications provide the basis for this

discussion concerning Ada and C. The following ten questions have been identified by NASA in

regard to the Ada versus C question. Each of these questions is addressed within this paper.
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Questions

1. Does the amount of MCCU C code available for reuse justify the use of C for new $SCC code?

[Less complex operating (run-time) environment then would be required to handle C, Ada, and

possibly Fortran in TCATS System]

2. Can the productivity improvement of 2-lines of code per PYE per day claimed by Loral be

justified when going from Ada to C language?

[8-1ice/day for Ada versus 10-line/day for C]

3. Can coding in C be done in a way (i.e., using up front softwa_ engineering practices and tools)

that results in a product that is as easily maintained as an Ada code product, i.e., is the life cycle

cost for C code naturally higher than Ada code?

4. Does the control cenu_r and u'ainer systems requirements differ sufficiendy to justify C

language for SSCC and Ada language for SSTF (i.e., real-time operation of trainer systems, mosdy

new code required by Trainer, however, some Fortran reuse is expected, etc.)?

5. Does the future of cod, development suggest limitations on resources (people and tools) for C

programming versus Ada programming (next 10-20 years)?

6. A=m the up front costs for Ada (tools, training, and lack of experienced programmers)

significant compared to that for C?

7. What are the risk assessments for completion of the SSCC and SSTF on schedule and within

cost considering use of C versus Ada languages for new code in each facility?

8. Are COTS products that will be available in the next I-I0 years more likely to be in C or Ada

language?

9. Will COTS products in the next I-5 years be available that will support multiple language

applications (C, Ada, Fortran)?

[i.e., will COTS tools likely have bindings for Ada, Fortran, and C, such as X windows and

other system services tools]

I0. What would be your recommendation for language use in the SSCC and SSTF given the desire

to maximize use from Shutde, maximizc portability across SSFP and within the SSCCHSSTF

facilities, independence from hardware constraints, and significant budget pressures to cut up front

costs and reduce run out costs with minimum risk to delivery capability and schedule?

[Consider resources availability, etc.]
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1. Does the amount of MCCU C code available for reuse justify the use of C for

new SSCC code? [Less complex operating (run-time) environment then would

be required to handle C, Ada, and possibly Fortran in TCATS System]

This is very dependent on two principle factors, the amount of MCCU C code which can actually
be reused in SSCC and the benefits of Ada compared to C. If a majority of all Delivery 1 SSCC

software is directly reused from MCCU, then C might be the best selection for all SSCC code. If
it is demonstrated that Ada offers significant benefits over C, then Ada might be the best selection

for all new SSCC code given the expected long life cycle of the SSCC.

The fast factor In determining whether new SSCC code should be written in Ada is to ensure that

Ada offers benefits over C for the life cycle of the SSCC. Everyone would agree that it does not

make sense to use Ada if C is going to provide more benefits over the life cycle. It does not make

sense to use Ada just because it has been widely associated with the SSFP. For the sake of argument

for this question, it will be assumed that Ada provides benefits over C which are desired by NASA.
If this is not the case, then the selection of C would be obvious. The Ada versus C argument will

be addressed within other questions.

Given the assumption that Ada provides benefits over C which are desired, the decision to use Ada

for new SSCC software is dependent on two factors:

• The amount of MCCU software which will be reused could justify the continued use of
C in new SSCC software. If 90% of MCCU software could be reused without

modification, then it would make sense to continue to use C. A completely C based

SSCC environment would be less complex than a mixed language environment and

might aLlow compatibility between SSCC and MCCU applications. CompatibiLity with

MCCU is clearly a goal of the SSCC in an effort to reduce development costs for both
centers. Differences in mission, scope, and data acquisition strategies, may make this

compatibility goal impossible to attain. If this goal can be realistically attained, it makes
sense to reuse the existing base of MCCU C code and to develop new SSCC code also
in C.

• The differences in mission, scope, and data acquisition strategies will probably mean

compatibility between MCCU and SSCC will not be maintained beyond Delivery 1 of
the SSCC software. The amount of MCCU software which can be directly inserted into

the SSCC without modification is probably very small in light of the modifications

which are required to meet the SSCC requirements. The following are examples of the

MCCU workstation software which have been selected for integration into the SSCC
from MCCU:

Display Manager

Display Builder

Comp Manager

Comp Builder

Each of these applications will require modifications before they can be integrated into

the SSCC. The potential for reuse varies for each of these applications based on the new

SSCC requix_ments for each application. The Display Builder and Display Manager ap-

plications are tentatively scheduled to receive new interfaces (GKS to X Windows),

new data acquisition strategies, and additional functionality to meet SSCC require-

-._.w
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ments. The new interfaces and data acquisition will require extensive modifications to

both applications and may limit reuse to as little as I0% of existing MCCU Display

Manager and Display Builder software. In the case of the Display Manager and Builder,

it may be reasonable to rewrite these applications from scratch using Ada if Ada is de-

termined to be more desirable than C due to the projected long SSCC life cycle.

The potential for reuse is much greater for the MCCU Comp Manager and Comp Build-

er applications. These applications require less extensive medications to their user in-

terfaces to meet SSCC requirements. Modifications arc still required to their respective

user interfaces, but the potential for reuse is probably about 60-70% in the user interface

portions of these applications. The Comp Manager and Comp Builder applications will

requireextensive modifications for the new data acquisitionstrategiesused in the

SSCC and to meet new SSCC requirements.These required modifications,and the

much smaller sizeof these two applicationswhen compared to the Display Manager

and Display Builder,alsomakes itreasonable to rcwrim them from scratchin Ada if

Ada can be shown toprovide importantbenefitsover the long lifecycle which ispro-

jectedfortheseapplications.

One importantaspectof convertingtheComp BuildertoAda isthetranslationof comps

intocxecutablesby theComp Builder.All versionsof the Comp Builder use the work-

stationresidentC compiler to produce machine executablecomps forthe Comp Man-

agcr.An Ada based Comp Builder willeitherrequirethe Ada compilcr to be resident

on the Comp Builderworkstation,or the executablecomps may continue to be gener-

atedviatheC compiler.Converting theComp Buildertouse Ada asthe targetlanguage

from which executable comps am produced willhave a sizableimpact on the Comp

Builder'stranslationfunctions.

Extensive modificationswillbe made to the four existingMCCU applicationsidentifiedabove

before they am integratedintothe SSCC. These modificationshave been shown to significantly

impact thepercentageof code which can be reused.The relativelylow perccntage of existingcode

which can be reusedcouplcd with thenew softwarewhich must be developcd makes itreasonable

toconsiderAda foruse inthe SSCC ifAda can bc shown toprovide bcncfitsover C.

An importantoptionistheintegrationofboth languages intotheSSCC. NASA-GOddard and other

commercial vendors CLockhccd-Austin as one example) have had very good success utilizinga

mixture of C and Ada. The FlightDynamics Division (FDD) atGoddard has committed to Ada as

theirfirstlanguage of choice.Even with thiscommitment toAda, the FDD stillreservestheright

touse C inportionsof theirsystems where C ismore appropriam than Ada. The FDD iscurmndy

startingthe development of a largesoftware devclopment effortestimated to be a 300 man-year

effort.Most of the soRwarc willbe developed in Ada, but some portions of the system willbe

developed in C because they feelC isa betterchoice than Ada for some portionsof the entire

system.The FDD feelsthatC isa betterlanguage forlow levelgraphicsoperations.

The Comp Buildermay be an excellentapplicationin which to use both Ada and C. The Comp

Builderapplicationmay be writteninAda while thecomps which itgeneratesmay continue tobe

complied C. This would utilizeAda where itismost appropriate,but would stillutilizeC for a

portionof theapplicationwhere itiswellsuiteddue tothetransparentcompilationof comps which

must occur.The runtimc impacts of the portto Ada would be minimizcd for the Comp Manager

and a largerportionof cxistingComp Manager code could bc reused.This would allow 95% ofthe
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Comp Builder/Manager software to be written in Ada, and C could be used for the 5% of software
where its benefits over Ada could be realized.
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2. Can the productivity improvement of 2-lines of code per PYE per day

claimed by Loral be justified when going from Ada to C language? [8-line/day

for Ada versus 10-line/day for C]

The different objectives and philosophies of the Ada and C languages make an 8 Lines per day

versus 10 lines per day comparison difficult. It is reasonable to expect that in one day a C

programmer will write more lines of code than an Ada programmer. For smaller projects this has

been demonstrated and is widely accepted. Over the course of longer projects, the benefits of the

Ada language compensate for its more complex and larger source files.

The ¢xl_rienc¢'s of developers on the SwRI CAST program would indicate that it will take slightly

more time to develop Ada source code than C source code. This is attributed to the fact that the

Ada language is more verbose than C and it is widely acknowledged that Ada is a better self

documenting language than C. C was designed from its beginning to be the HOL replacement for

assembly language. According to the fathers of C, "C is a relatively 'low level' language."

"C is a general-purpose programming language which features economy of expression

... C is not a 'very high level' language, nor a 'big' one, and is not specialized to any

particular area of application." [8]

Ada isa much largerand mon_ complex language than C and itssourcefilesare asa resulttypically

more verbose than C. Many Ada functionsare often writtenin two source files:the package

specificationand the package body, whereas the same functionin C would only require 1 source

file.There isa priceto pay for the additionaldocumentation provided by the more verbose Ada

source code.

Isthe additionalpricefor Ada sourcecode 2 linesper day? For a smallerproject,itisreasonable

toexpect development inAda totake longer.

"The same strongtypingand documenting thatmake Ada programs easy tounderstand

and cost-effectivetomaintain,can sometimes rnakc itawkward towritesimpletestpro-

grams."[61

Over the course of largerprojects,the same featureswhich make Ada awkward to use on small

projects,provide benefitswhich reduce development time.The experiencesof SwRI and Lockhcexi

indicatethatthe entiredevelopment cyclefor a largeAda program isnot significantlylongerthan

similar C projects.The experiences at Lockheed am an excellentexample of the rclativc

productivityof Ada and C programmers. Two similarprojectsare currentlycompleting final

testingatLockheed. One projectwas writteninC and one projectwas writtenin Ada. Almost all

of theC programmers were trainedin C atthestartof theC project,while only lin5 programmers

out of a totalof 30 were trainedinAda atthe startof theAda project.The otherAda programmers

received mostly "on-the-job"trainingas the projectprogressed.Programmers on the C project

developed more code initially,but the Ada projectcomplctcd integrationabout the same time as

the C project.Projectmanagers atLockheed acknowledge thatittook longcrto gct startedinAda,
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but over the entire d_velopment cycle, especially the testing and integration phases, Ada compared

very similarly to C.

The FDD at Goddard has collected extensive statistics comparing development in Ada to

FORTRAN. These statistics compare Ada to FORTRAN instead of Ada to C, but the similar

complexity of FORTRAN and C makes the information useful for comparison. The FDD has

collected comparison data over 5 years during I0 projects, 5 FORTRAN projects and 5 Ada

projects. They have found that the actual cost per line of code is either the same for FORTRAN

and Ada, or that Ada is actually cheaper than FORTRAN. These costs do not factor in the

significant development costs saved through the reuse of existing Ada software.

For a smaller scale project, most everyone agnes that given a trained Ada programmer and a

trained C programmer, the C programmer will be able to complete more new cod_ sooner. For a

larger, more complex project, most everyone agrees that there will be little difference in dine-to-

completion between Ada and C. Given this theory, and given the fact that most of the applications

which will be in the SSCC will be fairly large and complex, it would follow that contractors should

be able to complete Ada versions of the SSCC applications in the same PYE. Unfortunately, few

if any contractors have the level of Ada expertise available which will be required. The 25%

difference estimated by Loral is assumed to cover training time as C programmers transition to Ada

programmers. This 25% penalty should only be absorbed once. Thereafter, the cost for an Ada

project should compare very closely to the cost for the same project written in C.
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3. Can coding in C be done in a way (i.e., using up front software engineering
practices and tools) that results in a product that is as easily maintained as an
Ada code product, i.e., is the life cycle cost for C code naturally higher than Ada
code?

Software maintenance is the process of altering computer source code after the initial version of

the system is placed into production. Software maintenance is a broad term and is used in the

following context, that is, software maintenance includes:

• Modification to correct errors and design defects

• Modification of existing features to improve the software design

• Adaptation of the software to coexist with new hardware and software (i.e. software

will need to be retestcd and possibly modified when new versions of operating systems

are installed)

• Modification to basic data sources (such as files, databases, real-time data sources, etc.)

• Implementation of new features within the basic design

Any robust and heavily used system will have tremendous requirements for change, particularly

after the first major release of the system. It has been estimated by many authors, through case

studies and theoretical evaluation of the software life cycle, that most organizations will devote up

to 80% of their computer resources to the maintenance of software (the balance of the resources is

utilized for development of softwar_ systems).

With the proliferation of software systems over the last twenty years, the software industry is

struggling to maintain the many systems currendy in production. The major hurdle for most

organizations is that the systems developed over the last twenty years lack appropriate

documentation as well as established (or utilized) procedures to perform software maintenance. As

a result, many organizations rarely reuse software from previous efforts because of the lack of

understanding of what exacdy exists.

During the late 1980s, a proliferation of software development environments have been marketed

by various organizations. These software development environments allow software requirements,

actual source code, test procedures and user documentation to be integrated into a single

environment so that the necessary information about the source code is available in a controlled,

complete manner.

When selecting a computer programming language for a system to be developed which will need

to be maintained over a number of years, a careful evaluation of the programming language

features needs to be- made to assure that the selected language will cost effectively serve the

software life cycle.

The C programming language was designed to provide system level programming services for the

UNIX operating system. The environment was initially targeted for a research environment where

software life cycles were not a concern. The initial design goal of C and UNIX was to provide an

environment for a researcher to solve research problems. The language is a level of abstraction

above assembly language which provides the user a language which has the flexibility to fully

exploit the host computer while not providing many semantic constraints (implying that is easy to

develop C source code files which behave erratically). The UNIX operating system has matured

I
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and evolved tremendously from its initial design, the C language has essentially not changed since

its introduction.

The Ada programming language was conceived by the Department of Defense to solve the problem

of providing a language for development of embedded systems that could be developed and

maintained by many people over many years. Ada was designed as an environment, that is, one of

the primary design goals was to provide a language which encouraged the reuse of software. This

was achieved by introducing rigid standards on the development of software routines so that the

difficulty of transporting software between applications is minimized. The Ada language has many

explicit syntacti'C and semantic constraints which do not allow a programmer to develop ill-
behaved source code.

Many programming environments have been developed for Ada, these environments provide an

excellent foundation on which long term software programs can be developed. Ada was designed

from the start to support long term project development (it was not a design goal of the C language),

the Ada language provides many features which greatly simplify as well as encourage a strucauv.d

software development environment.

SwiLl believes that in the long-term, if correctly utilized, Ada will require fewer software

maintenance resources than a similar C program. Initial development costs for the C program may

be less than for an Ada program (particularly for smaller applications) but over the course of the

entire life cycle it is felt that costs will be less in the case of Ada. Due to the personnel and contract

turnover present at NASA, it is obvious that any long term project will have numerous personnel

assigned to the effort. The surest way for NASA to develop a good software product would be to

choose a development environment in which NASA can establish maximum control of the

software development process -- this environment exists for Ada.

Additionally, it might be possible to establish an environment for C which would be as rigorous as
most Ada environments -- however that environment is not commercially available today. If this

C environment were to be established, many manual controls and procedures would have to be

instilled into the environment in an equivalent manner to many existing Ada environments. While

these manual controls and procedures may be initially followed, it is difficult to predict whether or

not they could be maintained over many years. In contrast, many of the Ada controls and

procedures are natural to the development environment and if they are not followed -- application

programs will not be completed.

The answer to this question is both yes and no. Software written in C can be developed in a manner
similar to Ada. M1T's X Windows and OSF's Motif are two examples of programs written in C

which are designed with some of the Ada mentality. Ada will provide a more natural mechanism

for this type of decomposition and will enforce certain aspects which are important to the software

development life cycle.
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4. Does the control center and trainer systems requirements differ sufficiently

to justify C language for SSCC and Ada language for SSTF (i.e., real.time op-

eration of trainer systems, mostly new code required by Trainer; however, some
Fortran reuse is expected, etc.)?

The SwRI researchers who generated this paper have not received as much exposure to the SSTF

as they have the MCCU workstation applications. There was not enough time to investigate the

SSTF applications, so a recommendation has not been made specifically for the SSTF applications.

A blanket endorsement across as large a center as the SSTF for either C or Ada is not

recommended.'F.ach language has its strength and weaknesses. A generic set of metrics should be

determined which can b¢ applied against any application to determine which language should be

used. Once the metrics are determined, then they can be applied against applications such as the

trainer systems.

One of Ada's strengths is the support within the language which encourages reusability of code.

Experiences at Goddard and within industry support the claim that Ada encourages reusability of

code. On the surface, a training system would seem like the ideal type of system in which to reuse
software.
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5. Does the future of code development suggest limitations on resources (people
and tools) for C programming versus Ada programming (next 10-20 years)?

There axe many indications that both Ada and C will continue to be supported for at least the next

I0 years. The large base of C softwax¢ and programmers will ensure C's continued widespread use.

Ada support and usage is growing steadily, and it is reasonable to assume an increasing availability

of Ada tools and programmers.

C has achieved widespread acceptance across a variety of haxdware platforms. In the Unix

workstation arena, C is the dominate language for softwax¢ development due to the fact that Unix

itself was written in C. In the PC arena, the popularity of C is evidenced by the sheer number of

available C compilers, C tool chests, and COTS written in C. There is a large and ever expanding

pool of trained C programmers due to the demand for applications where C is typically used. Most

universities in the country offer a C class, and many base their core curriculum around the use of C.

The next l0 years will see continued widespread support and use of C. University curriculum, and

the growing PC and workstation markets will ensure C's continued success.

Although C has achieved widespread success and support, and this support can not bc overlooked

or under estimated, the projections for C arc not without some questions. The recent popularity of

C++ indicates that "vanilla C'" does not fulfill every objective. It is interesting to note that the

features which are being added to C++ are many of the features which were the basis for the design

of Ada.

C++ is a relatively new language when compaxed to C or even Ada. C++ was developed at AT&T

by Bjarne Strousu'up. The first C++ translator was completed in 1985. C++ adds the object oriented

data encapsulation and abstract data types features of Ada to C. C++ also incorporates other

important Ada features such as function inlining to improve performance. C++ is evidence of the

fact that object oriented design and object oriented programming (OOP) are powerful tools in the

d_velopment of complex applications.

C has always been regarded as a slightly higher level assembly language with the power and

responsibilities which come with that power. Some even regard C as a more "dangerous" tool than

assembly language because of the power and freedom permitted within C. The power and freedom

which are C's strengths require responsibility and organization by the programmer for even modest

sized programs. C++ is trying to address these issues:

"When:as the C programming language tests a programmer's inner strength and builds

character by following an 'anything goes' philosophy, C++ is the programmer's friend,

providing compile-time error messages that enforce data encapsulation." [9]

Products which are coming to maxket indicateC++'s popularity.More and more compilers are

becoming availableforC++ forboththePCs and theworkstations.Even theMOTIF bindingsfrom

OSF now supportC++. Itappcaxsthatthecomputer industryhas acknowledged thepower ofOOP.

The well publicized"vaporwares" and the failuresof software companies to deliverproducts

ontime may instigate a rapid move toward OOP and C++.
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The 1960's were dominated by assembly language. The 1970's and 1980's were dominated by

structured programming and the popularity of HOL languages such as FORTRAN, C, Pascal, and

Lisp. The 1990's may be dominated by OOP and languages such as Aria and C++.

Ada did not catch on and dominate the industry as it was projected to do during the last five years

of the 1980's. The Ada language was developed with much fanfare and was touted as the DoD's

answer to its mounting software costs. Unfortunately, too much was expected of Ada before it had

matured. C language compilers were given the opportunity to mamm over several years before C

became widely used. The fanfare and the expectations placed on Ada did not allow the language

several years tormature, and when the language did not meet the industry's expectations, it was

regarded as unusable. This perception of Ada still exists today in the mind of many software

developers and system designers.

The Ada language is more complex than C and Ada compilers am as a result necessarily more

complex than C compilers. The Ada ANSI standard also requires that the complete Aria language

is implemented before the compiler receives validation. Most of the original Ada compilers were

expensive, of poor quality, and not very efficient. As a result, the Ada language itself was criticized

for being inefficient when the implementation of the language was the culprit. This perception still

exists today.

Ada compiler technology has improved significantly and continues to improve.

"Technical problems with Ada stillexist,although experts say they're decreasing

steadilyin significance,and could virtuallydisappearover the next threetofiveyears."

[6]

The experiences at Cray, the supercomputer manufacturer, are an excellentexample of the

improvements inAda compiler technology.The Cray Ada compiler currentlyproduces code which

outperforms the same code written in FORTRAN and compiled using Cray's FORTRAN

compilcr.The Cray Ada code fortheWhetstone and Dhrystone benchmarks outperforms thesame

code writteninFORTRAN.

There are numerous examples of the advancements in Adz compiler technology.Itisimportantto

remember thatthe source language has littleimpact on many operations performed within an

executable.When two variablesare subtractedin a HOL language, itis the compiler's job to

convert thatsubtractioninto the CPU's machine code which performs two registerloads from

memory and then a subtractionof the two registers.The CPU should perform the same task

independentof the HOL language which was used tobuildthe sourcecode.
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"On similar benchmarks I have seen straightforward scalar Ada come very close to

what C can do on the same code. Indeed I have seen claims that for this kind of code,

Ada has done better than C. I am very surprised that anyone who halfway understood

compilers would claim that unadorned, numerical, scalar code from a language A pro-

gram would necessarily be slower than the same code from language B. rd be really

delighted to see these claims debunked forever. On a level playing field, there are only

X many ways to evaluate a scalar expression .... The growing maturity of compilers,

users, and managers is really gratifying! How long do you think it'll take for the bulk
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of the industry to throw away their outdated stereotypes about slow, clunky Ada? It's

good to see intelligent debate about what really makes programs slow. It ain't the

source language, folks." [11]

The performance of a language should not be an issue. The language's ability to represent these

operations should be the issue. Ada may in fact offer advantages over C for some applications:

"... hardware vendors are discovering that Ada may offer an inherent advantage for pro-

gran_ming digital signal processors over its arch rival, C." [7]

A tremendous amount of effort is being spent on the investigation and improvement of Ada

performance. Ada has undergone a maturing process during the last five years and it is now

struggling to dispel the many adverse opinions which were formed by software developers during
Ada's formative years. Support for Ada is steadily increasing as more quality Ada compilers
become available to universities and industry.

It should be noted that it took C about 10 years to gain wide acceptance after it was written. Just as

the legacy and installed base of FORTRAN and assembly language systems slowed the acceptance
of C, so also has the large installed base of C and FORTRAN slowed the acceptance of Ada.

Ada has always been expected to succeed due to the DoD's sponsorship of its development and

subsequent mandate of use in 1983.

"The birth of a new programming language is rarely celebrated far beyond the imme-

diate family. But, when the sponsor of the language is the largest consumer of comput-
ers in the world, then it becomes a major event." [10]

The DoD's 1983 mandate allowed waivers to be granted if Ada compilers were not available or

when using Ada would be more expensive or might prevent developers from meeting their
schedules. The poor performance of Ada code and lack of trained Ada programmers resulted in

many waivers being granted since 1983. The relative ease with which waivers were obtained
allowed C and FORTRAN to prosper and Ada's problems to persist.

The DoD has recently added teeth back into its Ada mandate by extending its mandate to include

automated data pr__essing in addition to embedded real-time applications. Congress further
strengthened the DoD's mandate by adding language to the 1991 Defense Appropriations Act
which states that after June 1, DoD programs that do not embrace Aria will be breaking the law. As

before, Congress has left a loophole, but at this time it will be much harder to demonstrate the need
for an Ada waiver.

The experiences of the FDD at Goddard are also of special interest. Frank McGarry, the Division
Chief of the FDD at Goddard has seen the maturing of Ada since the FDD started using Ada in

1985. The FDD has committed to making Ada their main language by 1995. The FDD has seen an

increase in the quality of Ada compilers and professionals, and the FDD has also seen an increase

in the number of contractors bidding Ada in proposals. Mr. McGarry thinks the most encouraging
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sign is the number of contractors bidding Ada on their own initiative when Ada was not identified

as a requirement.

The next lO years looks promising for both C and Ada. C's large base of applications and trained

programmers will ensure its continued use for many years. Recent developments surrounding C++

seem to indicate a shift towards C++ on a large scale over the next few years. C++ may be a better

option than C itself when the long life cycle of the SSCC and the complexity of the SSCC

applications is considered.

The next I0 years also look very promising for Ada. The next 5 years may see a more significant

growth of Ada.than the last I0 years, due to the availability of quality compilers, the new DoD

mandate, the increasing interest in OOP, and the increasing complexity of DoD applications.

This paper has not attempted to project the state of C or Ada past I0 years. The computer industry

has proven to be too fast paced and uncertain. In 1980, the great language scholar Ellis Horowitz

predicted that Pascal would be the language of the 19g0"s. Pascal did indeed enjoy a large measure

of success during the 1980's, but the later part of the 1980's saw the emergence of C as the

language of choice for engineering type applications. It is almost impossible to determine whether

C or Ada will receive greater support 20 years from now. The trends we are observing today are

the interest in OOP, the emergence of C++, the US Congress continued endorsement of Ada, and

the increasing quality of Ada compilers.
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6. Are the up front costs for Ada (tools, training, and lack of experienced pro-

grammers) significant compared to that for C?

The up front costs for Aria will be higher than for C. The size and total cost of the project will once

again determine whether Ada is a viable option. Ada tools and training are more expensive and are

fewer in number than C tools or training because Ada is a more complex language with less

maturity and therefore less industry support. There is a lack of experienced Ada programmers

when compared to C. The size and nature of the project may mitigate the deficiencies of Ada or

enhance them.

The lack of trained programmers is always more of a concern for Ada project managers than C

project managers, and Ada training often confL,'ms a project manager's bias against Ada. A survey

of Ada training courses compared to C training shows that Ada training courses are longer and

more expensive than C training. A number of video tapes are available for self-paced C training,

while very few Ada video tapes are available. Ada is definitely a more complex language than C

and to use the language well typically requires a different design philosophy than is typically used

with C or FORTRAN. Ada is acknowledged to have a steeper "learning curve" because the

language is more complex and because Ada incorporates OOP practices which are less prevalent

than the traditional structured programming techniques. C is a smaller language which is less

imposing than Ada. It is widely believed that programming in Ada requires much more extensive

and expensive training.

NASA Goddard has noticed a change in the naua'e of Ada training during the last several years. In

1985 the FDD committed to the use of Ada where possible and as a fh'st step towards Ada the FDD

programmers enrolled in Ada training. The Ada training at that time was a very intensive training

in both OOP methodologies and the application of OOP using Ada. During the last several years,

the FDD has noticed a change in the nature of Aria training toward less intensive training with less

emphasis placed on "grandiose OOP techniques." The FDD has noticed a trend toward "C like"

training, and they feel the effectiveness of this training is comparable to past training methods. This

trend is one the FDD is watrhing closely as they progress toward using Ada for 70% - 80% of all

projects by 1995.

Interviews with three Ada project managers have discovered a surprising but consistent theme. The

experiences at SwRI, Lockheed, and NASA-Goddard indicate that the extensive training that was

generally associated with Ada may not be required for the whole project team, and that the type of

training now being offered is sufficient for a segment of the programmers on larger projects. This

recent change in approach to training may lessen the cost and impacts of a lack of skilled Ada

programmers.

Many project teams are using a tiered approach to Ada training. If an Ada project was to be

composed of 10 programmers, 2 programmers would be skilled Ada programmers. Three

programmers would be moderately trained, and the other 5 programmers would have little or no

Aria experience at the start of the project. The layout of the software and the design of the interfaces

would be recorded in Ada package specifications. The majority of the implementation would be

completed in Ada package bodies by the 5 novice Ada programmers based on the Ada package

specifications developed by the more experienced/trained programmers.

This tiered approach allows the more experienced developers to do the overall system design, the

mid-level programmers to do the remaining interface design, and the inexperienced programmers

to do the implementation. This allows the more experienced programmers to have a greater impact
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on the design of the entire system, limiting the scope of the inexperienced programmers to

implementation. Individual package bodies can then be recoded by a more experienced

programmer if it becomes necessary. The recoding of a package body is less likely to have a "ripple
effect" when the software is in Ada as opposed to C. The project managers at both SwRI and
Lockheed feel the tiered approach helps keep projects out of trouble in the area of interfaces.

This tiered approach has been used at both SwRI and Lockheed with very good results. This

approach alleviates some of the concerns about a lack of trained Ada programmers. Both Lockheed

and the SwRI CAST group feel that using a tiered approach, even given a lack of skilled Ada

programmers, is LESS of a risk factor on a large program then using C. The project managers of
the SwRI CAST project feel the potentially greater benefits of Ada outweigh the initial training

which is required and the lack of experienced programmers.

Ada compilers are in almost all cases more expensive than C compilers. There are several good

Ada compilers which are comparable in price to C compilers for the same hardware platform, the
AdaZ compiler for the PC is an example. There ate several factors which usually cause Ada

compilers to cost more than C compilers. The Ada language is more complex than the C language,

and the resulting Ada compilers are more complex to develop. Ada compiler writers must

implement the entire ANSI/MIL-STD-1815A language to become validated, whereas the C
language has only recently become an ANSI standard. The lack of a defined standard allowed C

compiler writers more freedom in the implementation of their compilers. A standard programming
environment is also specified for Ada, the Ada Programming Support Environment (APSE), and

the Ada compiler writer must provide these additional tools which may not be bundled with C

compilers.

The up front costs for Ada are a very real concern. There is generally a lack of trained Ada

professionals. This is usually perceived as a very important risk factor. Projects at NASA, SwRI,

and Lockheed have shown this is not as big a risk factor as previously expected. The more
complex Ada language dictates that Ada training is more expensive than C training and there are
fewer sources of Ada training. NASA Goddard has seen a change in emphasis in Ada training

which may indicate that an intensive study of both the Ada language and OOP design
methodologies is not needed. NASA Goddard has noticed a trend during the last several years
toward C language style training. The more complex Ada language and requirement for full

implementation of the language for validation dictates that Ada compilers are more expensive than

C compilers and there are fewer Aria compilers available. Smaller scale, less complex projects will

not be able to offset the additional costs of Ada, but experience has demonstrated that larger

projects can absorb the up front costs of Ada. The nature of the project will determine if the

additional costs for Ada training and compilers can be offset by the good software engineering

principles that are embodied in Ada which allow the management of complex programming tasks.
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7. What are the risk assessments for completion of the SSCC and SSTF on

schedule and within cost considering use of C versus Ada languages for new

code in each facility?

There is greater support for C in environments similar to the SSCC and SSTF; C is established and

has been proven to work. Ada does have risks associated with it when compared to C, but Ada also

offers benefits in areas that C is suspect. The following table lists many of the factors which will

be involved in the development and maintenance of the SSCC and SSTF. These factors have been

grouped according to each language's strengths. A "+" indicates the language is uniquely superior,

a "-" indicates the language is clearly more of a risk factor.

Factor

Programmer productivity

Software development support tools

Ada C

+ +

+ +

Future Usage

Widespread acceptance, programmer availability

Small program risks for completion, integration

Interfaces to COTS

Compiler cost, quality

Existing MCCU software reuse

Training costs, availability

+

+

+

+

+

+

+

DoD Mandate, Congressional support

Software error rates, reliability

Future software reuse within SSCC, SSTF, SSFP

Large program risks for completion, integration

Portability

Standard language, language features (ANSI - ISO)

Maintainability

+

+

+

+

+

+

+
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8. Are COTS products that will be available in the next 1.10 years more likely

to be in C or Ada language?

For at least the next five years, more COTS products will be written in C than in Ada. There are

several important reasons why C will dominate COTS product development in both the Unix
workstation and PC arenas.

Ada is currently used primarily for large DoD contracts. Some work is being done outside of DoD

and on smaller scale projects, but for the most pan, Ada is used for large scale projects for either

the military or NASA. These large projects often apply to a very specialized problem domain and

axe not applicable to the general market place. Ada is currently used by large government
contractors such as GE, Lockheed, and Link. GE is currently working on the TDRSS satellite

terminal for NASA and Link wrote the B2 trainer entirely in Ada. Both of these Ada systems are

success stories, but there is little general need for a stealth bomber trainer or satellite terminal.

There axe several exceptions, the STARS Xlib bindings is one example, but for the most pan the

results of most Ada development projects do not become COTS products due to their nature.

Most COTS products are developed by Independent Software Vendors (ISV) and smaller software

companies. These companies are most concerned with up-front development costs and quick

market delivery. There are a number of factors which lead ISVs and smaller software companies

to develop in C instead of Ada.

The compiler is the most important tool of software developers and C compilers ate traditionally

less expensive than Ada compilers. In the Unix workstation arena, the C compiler is often bundled

with the OS or is readily available at a reasonable cost from the OS supplier. A prime example is

Sun Microsystems workstations. Sun workstations come bundled with a C compiler at no

additional cost, and the excellent GNU C compiler is also available free of charge for Sun

workstations. An Ada compiler for the same workstation will cost approximately $5,000 dollars

and may cost significantly more.

The compiler situation is even more clear-cut in the PC arena. There are a number of readily

available excellent C compilers available for the PC. Good C compilers are available for less than

$100. There axe far fewer good Ada compilers available for the PC and the compilers which are

available are more expensive. As in many areas of comparison between C and Ada, the number

and quality of Ada compilers for the PC is improving while the cost is declining. Meridian's AdaZ

compiler is an example of a good quality Ada compiler for the PC.

The larger pool of C software developers and the lack of good Ada software developers also causes

more COTS products to be written in C. The costs associated with the additional hardware

resources (memory,-disk space, processing power) which may be necessary for Ada software

development also influences COTS developers to use C.

These factors and others indicate that more COTS products will continue to be available written in

C than Ada. The way which COTS products are used may reduce the importance of the language

in which COTS packages ate written. The language used to develop shrink wrapped applications

or OS software which do not contain an Application Program Interface (API) is of little or no

importance. If Lotus 1-2-3 or "vi" is written in Ada or C, does not matter. In both cases, an API is

not required, so the language used to develop the application does not matter.
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In cams where the API provided by the COTS package is utilized, then the languages supported
natively by the API become important. This issue is addressed in the next question.

It is very hard to predict ff C's popularity with ISVs and software companies will continue five

years from now. The large pool of C programmers, the growth in the Unix based workstation

market, and the increasing use of C (as opposed to assembly, Pascal, or FORTRAN) on PCs will

definitely assure the development of more COTS packages in C than Aria.

The 1990's appear to be the decade of Object Oriented Programming (OOP) in the way that

structured programming and the use of High Order Languages (HOL) dominated the late 1970's
and 1980's. The number of COTS developed in C++, Aria, or even SmaUtalk in the next five years
may increase as OOP is taught in the universities and migrates into the commercial sector. C++ has

already shown phenomenal growth within the last two years. Examples of this are evident in the

number of C++ compilers which have recently become available and the recent release of the Motif
bindings fi'om OSF which support C++. The use of the C++ language may surpass "true" C in the

development of COTS products during the next 5 years.
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9. Will COTS products in the next 1-5 years be available that will support mul-

tiple language applications ( C, Ada, Fortran )? [i.e., will COTS tools likely have
bindings for Ada, Fortran, and C, such as X windows and other system services
tools]

Currently, more COTS APIs are available for C than for Ada. This trend will continue for at least

the next 5 years. In the workstation arena, Ada bindings are available for most popular applications.
If Ada bindings axe not available, the Ada pragma construct can be used to interface to the C

bindings. This approach has been used very successfully by Lockheed with a number of COTS

packages, inclOding database applications. The following APIs are good examples of the
availability of APIs for C and Ada:

• The POSIX standard's API was originally written in C due largely in part to Unix's

large influence on POSIX. The POSIX bindings are now also available in FORTRAN
and Ada.

• The X Window X11R4, MOTIF, and XView APIs were originally written in C. Ada

bindings are now available for all three. C++ bindings are also now available for

MOTIF, another indication of the growing popularity of C++.

Computer Aided Software Engineering (CASE) is one field which has embraced Ada extensively.

Most leading CASE tools operate well in an Ada environment and many generate Ada cod, from

information entered into the CASE tool. CADRE's Teamwork product is currently being used by

GE on the STGT project and the results have been very encouraging.

More COTS bindings will continue to be available for C than Ada. The number of Ada bindings

which are available is steadily increasing and the Ada pragrna interface is available when bindings
are not available.
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10. What would be your recommendation for language use in the SSCC and
SSTF given the desire to maximize use from Shuttle, maximize portability
across SSFP and within the SSCC/SSTF facilities, independence from hard-

ware constraints, and significant budget pressures to cut up front costs and re-
duce run out costs with minimum risk to delivery capability and schedule?

[Consider resources availability, etc.]

The Ada language was designed for the large, complex, long life-cycle, application domain. The

C language wasdesigned for freedom, compacmess and efficiency. The applications which will be

written for the SSCC more closely match the goals of Ada than C. From a language viewpoint, Ada

is the better choice. From an implementation viewpoint, C has traditionally been the best choice

due to the quality of C compilers and the relative poor quality of Ada compilers.

The quality of Ada implementations varies even today. Depending on the target hardware platform,

C may still be the only reasonable choice for large applications because a suitable Ada

implementation may not exist. Preliminary information may indicate this is still the case for large
IBM mainfiames. Good Ada environments do exist, the DEC environment is one example, and

more and more quality Ada compilers are becoming available. In the case of the military standard

1750A microprocessor, Ada and FORTRAN axe the only choice.

The availability of a good Ada environment is the f'trst question which must be asked. If a good

Ada environment is not available, then C is the only choice. If a good Ada environment is available,

then which language should be used? It is conceivable that both languages should be used. Ada and

C were designed from their beginnings for different applications and they should be applied to the

applications for which they were appropriate. C was designed by Dennis Ritchie as a "relatively

'low level' language" which is ideally suited for systems programming. Ada was designed through

an international review process for large, real-time, embedded applications. It appears that most

applications which will be integrated into the SSCC and SSTF fit the latter category and as a result

Ada should be used if a good environment is available.

The SSCC and SSTF should not select a single language unless all applications which will be

developed for those facilities are similar in nature or unless one of the languages is not a viable

option due to a lack of quality compilers. Ada and C should be applied in each facility where

appropriate to meet the priority of requirements identified in question number 10. A

characterization of the type of applications should be made for each facility, and then the

appropriate language applied to that type of application which best meets the priorities and

requirements.
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_-Experiment: EXPERIMENT 1

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 1960.79

Test 1 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization
1 2.00 32 64.00 3.26 %

2 4.00 16 64.00 3.26 %

3 8.00 8 64.00 3.26 %

4 16.00 4 64.00 3.26 %

5 32.00 2 64.00 3.26 %

320.00 16.32 %

Experiment step size: 1.63 %

Test 1 results:

Test duration (seconds) : i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000
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Experiment: EXPERIMENT 1

Completion on: Miss/skip _0 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 1960.79

Test 2 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 32 64.00 3.26 %

2 4.00 16 64.00 3.26 %

3 8.00 8 64.00 3.26 %

4 16.00 4 64.00 3.26 %

5 48.00 2 96.00 4.90 %

352.00 17.95 %

Experiment step size: 1.63 %

Test 2 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 20.833 240 120 120 5.584
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HARTSTONE BENCHMARK SUMMARY RESULTS

Baseline test:

Experiment: EXPERIMENT 1

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 1960.79

Test 1 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization
1 2.00 32 64.00 3.26 %

2 4.00 16 64.00 3.26 %

3 8.00 8 64.00 3.26 %

4 16.00 4 64.00 3.26 %

5 32.00 2 64.00 3.26 %

320.00 16.32 %

Experiment step size: 1.63 %

---_£est 1 results:

Test duration (seconds) : i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000



Last test with no missed/skipped deadlines:

See preceding summary of test 1

Test when deadlines first missed/skipped:

mmmmmm_mm_mmmmmmmmmmmmmmmmmmmmmmmmm_mmmmmmmmmmmmmmmmmmmmm_ummmm_m_m_mmmmmmimm

Experiment: EXPERIMENT_I

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 1960.79

Test 2 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

NO. (Hertz} per period per second Utilization

1 2.00 32 64.00 3.26 %

2 4.00 16 64.00 3.26 %

3 8.00 8 64.00 3.26 %

4 16.00 4 64.00 3.26 %

5 48.00 2 96.00 4.90 %

352.00 17.95 %

Experiment step size: 1.63 %

Test 2 results:

Test duration (seconds): I0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 20.833 240 120 120 5.584
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---T_inal test performed:

See preceding summary of test 2
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Benchmark : Hartstone Benchmark, version 1.0

Compiler : Massoomp 6350 - C3Ada version 1.0

Target : Masscomp 6350 - dual 33 MHz 68030

Characteristics of best test for this experiment:

(no missed/skipped deadlines)

Test 1 of Experiment 1

Raw (non-tasking) benchmark speed in KWIPS: 1960.79

Full task set:

Total Deadlines Task Set Total

Tasks Per Second Utilization KWIPS

5 62.00 16.32 % 320.00

Highest-frequency task:

Period Deadlines Task Task

(msec) Per Second Utilization KWIPS

31.250 32.00 3.26 % 64.00

Experiment step size: 1.63 %

END OF HARTSTONE BENCHMARK SUMMARY RESULTS



Experiment: EXPERIMENT 2

completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 2013.42

Test i characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

NO. (Hertz) per period per second Utilization

1 2.00 32 64.00 3.18 %

2 4.00 16 64.00 3.18 %

3 8.00 8 64.00 3.18 %

4 16.00 4 64.00 3.18 %

5 32.00 2 64.00 3.18 %

320.00 15.89 %

Experiment step size: 1.59 %

Test 1 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 316 2 2 19.257



Experiment: EXPERIMENT_2

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 2013.42

Test 2 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.20 32 70.40 3.50 %

2 4.40 16 70.40 3.50 %

3 8.80 8 70.40 3.50 %

4 17.60 4 70.40 3.50 %

5 35.20 2 70.40 3.50 %

352.00 17.48 %

Experiment step size: 1.59 %

Test 2 results:

Test duration (seconds): i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 454.545 23 0 0 0.000

2 227.273 45 0 0 0.000

3 113.636 89 0 0 0.000

4 56.818 177 0 0 0.000

5 28.409 353 0 0 0.000



Experiment : EXPERIMENT2
completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 2013.42

Test 3 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.40 32 76.80 3.81%

2 4.80 16 76.80 3.81%

3 9.60 8 76.80 3.81%

4 19.20 4 76.80 3.81%

5 38.40 2 76.80 3.81%

384.00 19.07 %

Experiment step size: 1.59 %

Test 3 results:

Test duration (seconds): i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 416.667 25 0 0 0.000

2 208.333 49 0 0 0.000

3 104.167 97 0 0 0.000

4 52.083 193 0 0 0.000

5 26.042 383 1 1 4.700
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Experiment : EXPERIMENT 2

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 2013.42

Test 4 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization
1 2.60 32 83.20 4.13 %

2 5.20 16 83.20 4.13 %

3 10.40 8 83.20 4.13 %

4 20.80 4 83.20 4.13 %

5 41.60 2 83.20 4.13 %

Experiment step size: 1.59 %

416.00 20.66 %

Test 4 results:

Test duration (seconds): I0.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 384.615 26 0 0 0.000

2 192.308 52 0 0 0.000

3 96.154 104 0 0 0.000

4 48.077 196 6 6 0.214

5 24.038 290 63 63 1.537



HARTSTONE BENCHMARK SUMMARY RESULTS

Baseline test:
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Experiment: EXPERIMENT 2

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 2013.42

Test 1 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization
1 2.00 32 64.00 3.18 %

2 4.00 16 64.00 3.18 %

3 8.00 8 64.00 3.18 %

4 16.00 4 64.00 3.18 %

5 32.00 2 64.00 3.18 %

320.00 15.89 %

Experiment step size: 1.59 %

Test 1 results:

Test duration (seconds): i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 316 2 2 19.257

_agSlnHnlNNaDinpgHilllRglllg|lBINi|glN|Pg|laaHqN_Nal|flllansg|ala|al|



......Last test with no missed/skipped deadlines:

Experiment: EXPERIMENT 2

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 2013.42

Test 2 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.20 32 70.40 3.50 %

2 4.40 16 70.40 3.50 %

3 8.80 8 70.40 3.50 %

4 17.60 4 70.40 3.50 %

5 35.20 2 70.40 3.50 %

352.00 17.48 %

Experiment step size: 1.59 %

Test 2 results:

_est duration (seconds): I0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 454.545 23 0 0 0.000

2 227.273 45 0 0 0.000

3 113.636 89 0 0 0.000

4 56.818 177 0 0 0.000

5 28.409 353 0 0 0.000
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Test when deadlines first missed/skipped:

See preceding sunmmry of test 1

Final test performed:

Experiment: EXPERIMENT 2

Completion on: Miss/sklp 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 2013.42

Test 4 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.60 32 83.20 4.13 %

2 5.20 16 83.20 4.13 %

3 10.40 8 83.20 4.13 %

4 20.80 4 83.20 4.13 %

5 41.60 2 83.20 4.13 %

416.00 20.66 %

Experiment step size: 1.59 %

Test 4 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 384.615 26 0 0 0.000

2 192.308 52 0 0 0.000

3 96.154 104 0 0 0.000

4 48.077 196 6 6 0.214

5 24.038 290 63 63 1.537
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Benchmark : Hartstone Benchmark, version 1.0

Compiler : Masscomp 6350 - C3Ada version 1.0

Target : Masscomp 6350 - dual 33 MHz 68030

Characteristics of best test for this experiment:

(no missed/skipped deadlines)

Test 2 of Experiment 2

Raw (non-tasking) benchmark speed in KWIPS: 2013.42

Full task set:

Total Deadlines Task Set Total

Tasks Per Second Utilization KWIPS

5 68.20 17.48 % 352.00

Highest-frequency task:

Period Deadlines Task Task

(msec) Per Second Utilization KWIPS

28.409 35.20 3.50 % 70.40

Experiment step size: 1.59 %

mmmmmmmmmmmmmmmmmmmmmmmnmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

END OF HARTSTONE BENCHMARK SUMMARY RESULTS



Experiment: EXPERIMENT 3

completion on: Miss/skip _0 deadlines

Raw speed in Kilo-Whetstone Instructions

Test I characteristics:

Per Second (KWIPS): 1960.79

Task Frequency Kilo-Whets Kilo-Whets Kequested Workload

No. (Hertz) per period per second Utilization

I 2.00 32 64.00 3.26 %

2 4.00 16 64.00 3.26 %

3 8.00 8 64.00 3.26 %

4 16.00 4 64.00 3.26 %

5 32.00 2 64.00 3.26 %

320.00 16.32 %

Experiment step size: 3.16 %

Test 1 results:

Test duration (seconds): i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000



Experiment : EXPERIMENT 3

completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 1960.79

Test 2 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization
1 2.00 33 66.00 3.37 %

2 4.00 17 68.00 3.47 %

3 8.00 9 72.00 3.67 %

4 16.00 5 80.00 4.08 %

5 32.00 3 96.00 4.90 %

382.00 19.48 %

Experiment step size: 3.16 %

TeSt 2 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000
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Experiment: EXPERIMENT 3

completion on: Hiss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1960.79

Test 3 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 34 68.00 3.47 %

2 4.00 18 72.00 3.67 %

3 8.00 I0 80.00 4.08 %

4 16.00 6 96.00 4.90 %

5 32.00 4 128.00 6.53 %

444.00 22.64 %

Experiment step size: 3.16 %

Test 3 results:

Test duration (seconds) : 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 318 1 1 11.963
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Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 1960.79

Test 4 characteristics:

Task Frequency Kilo-Whets Kilo-whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 35 70.00 3.57 %

2 4.00 19 76.00 3.88 %

3 8.00 11 88.00 4.49 %

4 16.00 7 112.00 5.71%

5 32.00 5 160.00 8.16 %

506.00 25.81%

Experiment step size: 3.16 %

Test 4 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000
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Experiment: EXPERIMENT 3

completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second

Test 5 characteristics:

(KWIPS} : 1960.79

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz} per period per second Utilization

1 2.00 36 72.00 3.67 %

2 4.00 20 80.00 4.08 %

3 8.00 12 96.00 4.90 %

4 16.00 8 128.00 6.53 %

5 32.00 6 192.00 9.79 %

568.00 28.97 %

Experiment step size: 3.16 %

Test 5 results:

Test duration (seconds}: 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

i 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000
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Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 1960.79

Test 6 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization
I 2.00 37 74.00 3.77 %

2 4.00 21 84.00 4.28 %

3 8.00 13 104.00 5.30 %

4 16.00 9 144.00 7.34 %

5 32.00 7 224.00 11.42 %

630.00 32.13 %

Experiment step size: 3.16 %

TeSt 6 results:

Test duration (seconds) : i0.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)

i 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000
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Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1960.79

Test 7 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization
i 2.00 38 76.00 3.88 %

2 4.00 22 88.00 4.49 %

3 8.00 14 112.00 5.71%

4 16.00 10 160.00 8.16 %

5 32.00 8 256.00 13.06 %

692.00 35.29 %

Experiment step size: 3.16 %

Test 7 results:

Test duration (seconds): i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000
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Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 1960.79

Test 8 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 39 78.00 3.98 %

2 4.00 23 92.00 4.69 %

3 8.00 15 120.00 6.12 %

4 16.00 ii 176.00 8.98 %

5 32.00 9 288.00 14.69 %

754.00 38.45 %

Experiment step size: 3.16 %

Test 8 results:

Test duration (seconds): i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 314 3 3 11.617

| nBq_ |_NnRaN|NNnIRI_NNInNIWBNNnBIINI|NmlNRNNI|INUNNIBINNNBBNNBNImi!



|lglNiBilBiiNl|lNRi_NNBN|lMiniBBililgIBi|UBlBBgPBRillNl|NiBR!

Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 1960.79

Test 9 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 40 80.00 4.08 %

2 4.00 24 96.00 4.90 %

3 8.00 16 128.00 6.53 %

4 16.00 12 192.00 9.79 %

5 32.00 10 320.00 16.32 %

816.00 41.62 %

Experiment step size: 3.16 %

Test 9 results:

Test duration (seconds): i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 241 40 39 0.488
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HARTSTONE BENCHMARK SUMMARY RESULTS

Baseline test:
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Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1960.79

Test 1 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization
1 2.00 32 64.00 3.26 %

2 4.00 16 64.00 3.26 %

3 8.00 8 64.00 3.26 %

4 16.00 4 64.00 3.26 %

5 32.00 2 64.00 3.26 %

320.00 16.32 %

Experiment step size: 3.16 %

___fest I results:

Test duration (seconds) : 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000



Last test with no missed/skipped deadlines:

Experiment: EXPERIMENT 3

Completion on: Miss/skip 30 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 1960.79

Test 7 characteristics:

Task Frequency Kilo-Whets K11o-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 38 76.00 3.88 %

2 4.00 22 88.00 4.49 %

3 8.00 14 112.00 5.71%

4 16.00 i0 160.00 8.16 %

5 32.00 8 256.00 13.06 %

692.00 35.29 %

Experiment step size: 3.16 %

Test 7 results:

Test duration (seconds) : 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000



...._est when deadlines first missed/skipped:

Experiment: EXPERIMENT 3

Completion on: Miss/skip _0 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 1960.79

Test 3 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 34 68.00 3.47 %

2 4.00 18 72.00 3.67 %

3 8.00 10 80.00 4.08 %

4 16.00 6 96.00 4.90 %

5 32.00 4 128.00 6.53 %

444.00 22.64 %

Experiment step size: 3.16 %

Test 3 results:

"est duration (seconds): i0.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 318 1 1 11.963



Final test performed:
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Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 1960.79

Test 9 characteristics:

Task Frequency Kilo-Whets Kilo-whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 40 80.00 4.08 %

2 4.00 24 96.00 4.90 %

3 8.00 16 128.00 6.53 %

4 16.00 12 192.00 9.79 %

5 32.00 10 320.00 16.32 %

Experiment step size: 3.16 %

816.00 41.62 %

Test 9 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 241 40 39 0.488
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Benchmark : Hartstone Benchmark, version 1.0

Compiler : Masscomp 6350 - C3Ada version 1.0

Target : Masscon_ 6350 - dual 33 MHz 68030

Characteristics of best test for this experiment:

(no missed/skipped deadlines)

Test 7 of Experiment 3

Raw (non-tasking) benchmark speed in KWIPS: 1960.79

Full task set:

Total Deadlines Task Set Total

Tasks Per Second Utilization KWIPS

5 62.00 35.29 % 692.00

Highest-frequency task:

Period Deadlines Task Task

(msec) Per Second Utilization KWIPS

31.250 32.00 13.06 % 256.00

Experiment step size: 3.16 %

_mmmmmmmmmmmmmmmmmmmmmmmnmmmmm|mmmmmmmmm|mmmmmmmmm|mmmmmmmmmmm|mmmmmmmmm

END OF HARTSTONE BENCHMARK SUMMARY RESULTS
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Experiment : EXPERIMENT_4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 2013.42

Test 1 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

i 2.00 32 64.00 3.18 %

2 4.00 16 64.00 3.18 %

3 8.00 8 64.00 3.18 %

4 16.00 4 64.00 3.18 %

5 32.00 2 64.00 3.18 %

320.00 15.89 %

Experiment step size: 3.18 %

Test 1 results:

Test duration (seconds}: 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000
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Experiment: EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 2013.42

Test 2 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

i 2.00 32 64.00 3.18 %

2 4.00 16 64.00 3.18 %

3 8.00 8 64.00 3.18 %

4 16.00 4 64.00 3.18 %

5 32.00 2 64.00 3.18 %

6 8.00 8 64.00 3.18 %

384.00 19.07 %

Experiment step size: 3.18 %

Test 2 results:

Test duration (seconds) : i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

i 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000

6 125.000 80 0 0 0.000
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Experiment: EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 2013.42

Test 3 characteristics:

Task Frequency Kilo-Whets Kilo-whets Requested Workload

No. (Hertz} per period per second Utilization

1 2.00 32 64.00 3.18 %

2 4.00 16 64.00 3.18 %

3 8.00 8 64.00 3.18 %

4 16.00 4 64.00 3.18 %

5 32.00 2 64.00 3.18 %

6 8.00 8 64.00 3.18 %

7 8.00 8 64.00 3.18 %

448.00 22.25 %

Experiment step size: 3.18 %

Test 3 results:

Test duration (seconds}: i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec}

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000

6 125.000 80 0 0 0.000

7 125.000 80 0 0 0.000
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Experiment : EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 2013.42

Test 4 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 32 64.00 3.18 %

2 4.00 16 64.00 3.18 %

3 8.00 8 64.00 3.18 %

4 16.00 4 64.00 3.18 %

5 32.00 2 64.00 3.18 %

6 8.00 8 64.00 3.18 %

7 8.00 8 64.00 3.18 %

8 8.00 8 64.00 3.18 %

512.00 25.43 %

Experiment step size: 3.18 %

Test 4 results:

_est duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 312 4 4 0.763

6 125.000 80 0 0 0.000

7 125.000 80 0 0 0.000

8 125.000 80 0 0 0.000
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Experiment: EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 2013.42

Test 5 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz] per period per second Utilization

1 2.00 32 64.00 3.18 %

2 4.00 16 64.00 3.18 %

3 8.00 8 64.00 3.18 %

4 16.00 4 64.00 3.18 %

5 32.00 2 64.00 3.18 %

6 8.00 8 64.00 3.18 %

7 8.00 8 64.00 3.18 %

8 8.00 8 64.00 3.18 %

9 8.00 8 64.00 3.18 %

576.00 28.61%

Experiment step size: 3.18 %

Test 5 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec]

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 296 12 12 2.075

6 125.000 80 0 0 0.000

7 125.000 80 0 0 0.000

8 125.000 80 0 0 0.000

9 125.000 80 0 0 0.000
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Experiment: EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 2013.42

Test 6 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization
1 2.00 32 64.00 3.18 %

2 4.00 16 64.00 3.18 %

3 8.00 8 64.00 3.18 %

4 16.00 4 64.00 3.18 %

5 32.00 2 64.00 3.18 %

6 8.00 8 64.00 3.18 %

7 8.00 8 64.00 3.18 %

8 8.00 8 64.00 3.18 %

9 8.00 8 64.00 3.18 %

10 8.00 8 64.00 3.18 %

Experiment step size: 3.18 %

640.00 31.79 %

?est 6 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped
No. in msecs Deadlines Deadlines Deadlines

1 500.000 20 0 0

2 250.000 40 0 0

3 125.000 80 0 0

4 62.500 160 0 0

5 31.250 295 13 12

6 125.000 80 0 0

7 125.000 80 0 0

8 125.000 80 0 0

9 125.000 80 0 0

10 125.000 80 0 0

Average

Late (msec)

0 000

0 000

0 000

0 000

1 282

0 000

0 000

0 000

0.000

0.000
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Experiment: EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second

Test 7 characteristics:

(KWIPS) : 2013.42

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 32 64.00 3.18 %

2 4.00 16 64.00 3.18 %

3 8.00 8 64.00 3.18 %

4 16.00 4 64.00 3.18 %

5 32.00 2 64.00 3.18 %

6 8.00 8 64.00 3.18 %

7 8.00 8 64.00 3.18 %

8 8.00 8 64.00 3.18 %

9 8.00 8 64.00 3.18 %

10 8.00 8 64.00 3.18 %

11 8.00 8 64.00 3.18 %

704.00 34.97 %

Experiment step size: 3.18 %

Test 7 results:

Test duration (seconds): i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 301 I0 9 0.488

6 125.000 80 0 0 0.000

7 125.000 80 0 0 0.000

8 125.000 80 0 0 0.000

9 125.000 80 0 0 0.000

i0 125.000 80 0 0 0.000

11 125.000 80 0 0 0.000



Experiment: EXPERIMENT4
Completion on: Miss/skip 50 deadlines

Rawspeed in Kilo-Whetstone Instructions

Test 8 characteristics:

Per Second (KWIPS) : 2013.42

Task Frequency Kilo-Whets Kilo-whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 32 64.00 3.18 %

2 4.00 16 64.00 3.18 %

3 8.00 8 64.00 3.18 %

4 16.00 4 64.00 3.18 %

5 32.00 2 64.00 3.18 %

6 8.00 8 64.00 3.18 %

7 8.00 8 64.00 3.18 %

8 8.00 8 64.00 3.18 %

9 8.00 8 64.00 3.18 %

10 8.00 8 64.00 3.18 %

11 8.00 8 64.00 3.18 %

12 8.00 8 64.00 3.18 %

Experiment step size: 3.18 %

768.00 38.14 %

_-_Test 8 results:

Test duration (seconds) : I0.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 71 1 8 941.345

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000

6 125.000 80 0 0 0.000

7 125.000 80 0 0 0.000

8 125.000 80 0 0 0.000

9 125.000 80 0 0 0.000

10 125.000 80 0 0 0.000

11 125.000 62 2 2 941.345

12 125.000 80 0 0 0.000
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Experiment: EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions

Test 9 characteristics:

Per Second (KWIPS) : 2013.42

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization
1 2.00 32 64.00 3.18 %

2 4.00 16 64.00 3.18 %

3 8.00 8 64.00 3.18 %

4 16.00 4 64.00 3.18 %

5 32.00 2 64.00 3.18 %

6 8.00 8 64.00 3.18 %

7 8.00 8 64.00 3.18 %

8 8.00 8 64.00 3.18 %

9 8.00 8 64.00 3.18 %

10 8.00 8 64.00 3.18 %

11 8.00 B 64.00 3.18 %

12 8.00 8 64.00 3.18 %

13 8.00 8 64.00 3.18 %

832.00 41.32 %

Experiment step size: 3.18 %

Test 9 results:

Test duration (seconds): i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 302 9 9 2.075

6 125.000 8_ 0 0 0.000

7 125.000 80 0 0 0.000

8 125.000 80 0 0 0.000

9 125.000 80 0 0 0.000

i0 125.000 80 0 0 0.000

11 125.000 80 0 0 0.000

12 125.000 80 0 0 0.000

13 125.000 80 0 0 0.000
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Exper_nt : EXPERIMENT 4

completion on: Hiss/skip _0 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 2013.42

Test 10 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 32 64.00 3.18 %

2 4.00 16 64.00 3.18 %

3 8.00 8 64.00 3.18 %

4 16.00 4 64.00 3.18 %

5 32.00 2 64.00 3.18 %

6 8.00 8 64.00 3.18 %

7 8.00 8 64.00 3.18 %

8 8.00 8 64.00 3.18 %

9 8.00 8 64.00 3.18 %

10 8.00 8 64.00 3.18 %

11 8.00 8 64.00 3.18 %

12 8.00 8 64.00 3.18 %

13 8.00 8 64.00 3.18 %

14 8.00 8 64.00 3.18 %

896.00 44.50 %

_xperiment step size: 3.18 %

Test i0 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 259 31 30 0.244

6 125.000 80 0 0 0.000

7 125.000 80 0 0 0.000

8 125.000 80 0 0 0.000

9 125.000 80 0 0 0.000

10 125.000 80 0 0 0.000

11 125.000 80 0 0 0.000

12 125.000 80 0 0 0.000

13 125.000 80 0 0 0.000

14 125.000 80 0 0 0.000
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HARTSTONE BENCHMARK SUMMARY RESULTS

Baseline test:
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Experiment: EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 2013.42

Test 1 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization
1 2.00 32 64.00 3.18 %

2 4.00 16 64.00 3.18 %

3 8.00 8 64.00 3.18 %

4 16.00 4 64.00 3.18 %

5 32.00 2 64.00 3.18 %

320.00 15.89 %

Experiment step size: 3.18 %

L

Test 1 results:

Test duration (seconds) : 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000



-- Last test with no missed/skipped deadlines:
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Experiment: EXPERIMENT 4
Completion on: Miss/skip _0 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 2013.42

Test 3 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 32 64.00 3.18 %

2 4.00 16 64.00 3.18 %

3 8.00 8 64.00 3.18 %

4 16.00 4 64.00 3.18 %

5 32.00 2 64.00 3.18 %

6 8.00 8 64.00 3.18 %

7 8.00 8 64.00 3.18 %

448.00 22.25 %

Experiment step size: 3.18 %

Test 3 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000

6 125.000 80 0 0 0.000

7 125.000 80 0 0 0.000
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Test when deadlines first missed/skipped:

Experiment: EXPERIMENT 4

completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 2013.42

Test 4 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 32 64.00 3.18 %

2 4.00 16 64.00 3.18 %

3 8.00 8 64.00 3.18 %

4 16.00 4 64.00 3.18 %

5 32.00 2 64.00 3.18 %

6 8.00 8 64.00 3.18 %

7 8.00 8 64.00 3.18 %

8 8.00 8 64.00 3.18 %

512.00 25.43 %

Experiment step size: 3.18 %

Test 4 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped

No. in msecs Deadlines Deadlines Deadlines

1 500.000 20 0 0

2 250.000 40 0 0

3 125.000 80 0 0

4 62.500 160 0 0

5 31.250 312 4 4

6 125.000 80 0 0

7 125.000 80 0 0

8 125.000 80 0 0

Average

Late (msec)

0.000

0.000

0 000

0 000

0 763

0 000

0 000

0 000
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_ Final test performed:
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Experiment: EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 2013.42

Test 10 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 32 64.00 3.18 %

2 4.00 16 64.00 3.18 %

3 8.00 8 64.00 3.18 %

4 16.00 4 64.00 3.18 %

5 32.00 2 64.00 3.18 %

6 8.00 8 64.00 3.18 %

7 8.00 8 64.00 3.18 %

8 8.00 8 64.00 3.18 %

9 8.00 8 64.00 3.18 %

10 8.00 8 64.00 3.18 %

11 8.00 8 64.00 3.18 %

12 8.00 8 64.00 3.18 %

13 8.00 8 64.00 3.18 %

14 B.00 8 64.00 3.18 %

896.00 44.50 %

Experiment step size: 3.18 %

Test I0 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped

No. in msecs Deadlines Deadlines Deadlines

1 500.000 20 0 0

2 250.000 40 0 0

3 125.000 80 0 0

4 62.500 160 0 0

5 31.250 259 31 30

6 125.000 80 0 0

7 125.000 80 0 0

8 125.000 80 0 0

9 125.000 80 0 0

10 125.000 80 0 0

11 125.000 80 0 0

12 125.000 80 0 0

13 125.000 80 0 0

14 125.000 80 0 0

Average

Late (msec)

0.000

0.000

0.000

0.000

0.244

0.000

0.000

0.000

0 000

0 000

0 000

0 000

0 000

0 000
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Benchmark : Hartstone Benchmark, version 1.0

Compiler : Masscomp 6350 - C3Ada version 1.0

Target : Masscomp 6350 - dual 33 MHz 68030

Characteristics of best test for this experiment:

(no missed/skipped deadlines)

Test 3 of Experiment 4

Raw (non-tasking) benchmark speed in KWIPS: 2013.42

Full task set:

Total Deadlines Task Set Total

Tasks Per Second Utilization KWIPS

7 78.00 22.25 % 448.00

Highest-frequency task:

Period Deadlines Task Task

(msec) Per Second Utilization KWIPS

31.250 32.00 3.18 % 64.00

Experiment step size: 3.18 %

l|llllli|il|nli|lU|ii|l|illi|llll|||li|illliliHli|i|llllii|liRIINil! ti

END OF HARTSTONE BENCHMARK SUMMARY RESULTS
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Experiment: EXPERIMENT 1

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4476.28

Test 1 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 32 64.00 1.43 %

2 4.00 16 64.00 1.43 %

3 8.00 8 64.00 1.43 %

4 16.00 4 64.00 1.43 %

5 32.00 2 64.00 1.43 %

320.00 7.15 %

Experiment step size: 0.71%

Test 1 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000
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Experiment: EXPERIMENT 1

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28

Test 2 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

NO. (Hertz) per period per second Utilization

1 2.00 32 64.00 1.43 %

2 4.00 16 64.00 1.43 %

3 8.00 8 64.00 1.43 %

4 16.00 4 64.00 1.43 %

5 48.00 2 96.00 2.14 %

352.00 7.86 %

Experiment step size: 0.71%

Test 2 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 20.833 480 0 0 0.000
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Experiment : EXPERIMENT 1

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4476.28

Test 3 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 32 64.00 1.43 %

2 4.00 16 64.00 1.43 %

3 8.00 8 64.00 1.43 %

4 16.00 4 64.00 1.43 %

5 64.00 2 128.00 2.86 %

384.00 8.58 %

Experiment step size: 0.71%

Test 3 results:

Test duration (seconds): i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 15.625 477 81 82 1.988



HARTSTONEBENCHMARKSUMMARYRESULTS

Baseline test:

Experiment: EXPERIMENT 1

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4476.28

Test 1 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 32 64.00 1.43 %

2 4.00 16 64.00 1.43 %

3 8.00 8 64.00 1.43 %

4 16.00 4 64.00 1.43 %

5 32.00 2 64.00 1.43 %

320.00 7.15 %

Experiment step size: 0.71%

Test i results:

Test duration (seconds): I0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000
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Last test with no missed/skipped deadlines:

Experiment: EXPERIMENT 1

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4476.28

Test 2 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization

1 2.00 32 64.00 1.43 %

2 4.00 16 64.00 1.43 %

3 8.00 8 64.00 1.43 %

4 16.00 4 64.00 1.43 %

5 48.00 2 96.00 2.14 %

352.00 7.86 %

Experiment step size: 0.71%

Test 2 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 20.833 480 0 0 0.000



Test when deadlines first missed/skipped:
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Experiment: EXPERIMENT 1

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4476.28

Test 3 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 32 64.00 1.43 %

2 4.00 16 64.00 1.43 %

3 8.00 8 64.00 1.43 %

4 16.00 4 64.00 1.43 %

5 64.00 2 128.00 2.86 %

384.00 8.58 %

Experiment step size: 0.71%

Test 3 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 15.625 477 81 82 1.988
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_inal test performed:

___ See preceding summary of test 3
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Benchmark : Hartstone Benchmark, version 1.0

Compiler : Verdix 6.0 -> Sun SPARC

Target : Sun SPARC Station I+ (25 MHz) - multiuser mode

Characteristics of best test for this experiment:

(no missed/skipped deadlines)

Test 2 of Experiment 1

Raw (non-tasking) benchmark speed in KWIPS: 4476.28

Full task set:

Total Deadlines Task Set Total

Tasks Per Second Utilization KWIPS

5 78.00 7.86 % 352.00

Highest-frequency task:

Period Deadlines Task Task

(msec) Per Second Utilization KWIPS

20.833 48.00 2.14 % 96.00

Experiment step size: 0.71%

END OF HARTSTONE BENCHMARK SUMMARY RESULTS
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Experiment: EXPERIMENT 2

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4364.91

Test 1 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 32 64.00 1.47 %

2 4.00 16 64.00 1.47 %

3 8.00 8 64.00 1.47 %

4 16.00 4 64.00 1.47 %

5 32.00 2 64.00 1.47 %

320.00 7.33 %

Experiment step size: 0.73 %

Test 1 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000
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Experiment : EXPERIMENT 2

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4364.91

Test 2 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Kequested Workload

No. (Hertz) per period per second Utilization

1 2.20 32 70.40 1.61%

2 4.40 16 70.40 1.61%

3 8.80 8 70.40 1.61%

4 17.60 4 70.40 1.61%

5 35.20 2 70.40 1.61%

352.00 8.06 %

Experiment step size: 0.73 %

Test 2 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 454.545 23 0 0 0.000

2 227.273 45 0 0 0.000

3 113.636 88 0 0 0.000

4 56.818 177 0 0 0.000

5 28.409 350 1 1 4.000
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Experiment: EXPERIMENT 2

completion on: Miss/skip 50 deadlines

Kaw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4364.91

Test 3 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.40 32 76.80 1.76 %

2 4.80 16 76.80 1.76 %

3 9.60 8 76.80 1.76 %

4 19.20 4 76.80 1.76 %

5 38.40 2 76.80 1.76 %

384.00 8.80 %

Experiment step size: 0.73 %

Test 3 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 416.667 25 0 0 0.000

2 208.333 48 0 0 0.000

3 104.167 97 0 0 0.000

4 52.083 192 0 0 0.000

5 26.042 385 0 0 0.000
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Experiment: EXPERIMENT 2

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4364.91

Test 4 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.60 32 83.20 1.91%

2 5.20 16 83.20 1.91%

3 10.40 8 83.20 1.91%

4 20.80 4 83.20 1.91%

5 41.60 2 83.20 1.91%

416.00 9.53 %

Experiment step size: 0.73 %

TeSt 4 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 384.615 26 0 0 0.000

2 192.308 53 0 0 0.000

3 96.154 104 0 0 0.000

4 48.077 208 0 0 0.000

5 24.038 414 1 1 1.000
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Experiment: EXPERIMENT 2

completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4364.91

Test 5 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.80 32 89.60 2.05 %

2 5.60 16 89.60 2.05 %

3 11.20 8 89.60 2.05 %

4 22.40 4 89.60 2.05 %

5 44.80 2 89.60 2.05 %

448.00 10.26 %

Experiment step size: 0.73 %

Test 5 results:

Test duration (seconds) : 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 357.143 28 0 0 0.000

2 178.571 56 0 0 0.000

3 89.286 113 0 0 0.000

4 44.643 224 0 0 0.000

5 22.321 448 0 0 0.000



Experiment: EXPERIMENT 2

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second

Test 6 characteristics:

(KWIPS) : 4364.91

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

I 3.00 32 96.00 2.20 %

2 6.00 16 96.00 2.20 %

3 12.00 8 96.00 2.20 %

4 24.00 4 96.00 2.20 %

5 48.00 2 96.00 2.20 %

480.00 ii.00 %

Experiment step size: 0.73 %

Test 6 results:

Test duration (seconds): i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 333.333 30 0 0 0.000

2 166.667 61 0 0 0.000

3 83.333 120 0 0 0.000

4 41.667 239 1 1 6.000

5 20.833 477 1 2 25.000
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Experiment: EXPERIMENT 2

completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4364.91

Test 7 characteristics:

Task Frequency Kilo-Whets Kilo-Whets &equested Workload

NO. (Hertz) per period per second Utilization
1 3.20 32 102.40 2.35 %

2 6.40 16 102.40 2.35 %

3 12.80 8 102.40 2.35 %

4 25.60 4 102.40 2.35 %

5 51.20 2 102.40 2.35 %

512.00 11.73 %

Experiment step size: 0.73 %

v

Test 7 results:

Test duration (seconds): i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 312.500 32 0 0 0.000

2 156.250 64 0 0 0.000

3 78.125 128 0 0 0.000

4 39.063 256 0 0 0.000

5 19.531 512 0 0 0.000
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Experiment : EXPERIMENT 2

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4364.91

Test 8 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization
1 3.40 32 108.80 2.49 %

2 6.80 16 108.80 2.49 %

3 13.60 8 108.80 2.49 %

4 27.20 4 108.80 2.49 %

5 54.40 2 108.80 2.49 %

544.00 12.46 %

Experiment step size: 0.73 %

Test 8 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped
No. in msecs Deadlines Deadlines Deadlines

1 294.118 35 0 0

2 147.059 68 0 0

3 73.529 137 0 0

4 36.765 271 1 1

5 18.382 447 48 49

Average

Late (msec)

0.000

0.000

0.000

ii.000

1.688



HARTSTONE BENCHMARK SUMMARY RESULTS

Baseline test:

Experiment: EXPERIMENT 2

Completion on: Miss/skip _0 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4364.91

Test 1 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

I 2.00 32 64.00 1.47 %

2 4.00 16 64.00 1.47 %

3 8.00 8 64.00 1.47 %

4 16.00 4 64.00 1.47 %

5 32.00 2 64.00 1.47 %

320.00 7.33 %

Experiment step size: 0.73 %

Test i results:

Test duration (seconds): i0.0

Task Period Met Missed Skipped Average

NO. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000
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Last test with no missed/skipped deadlines:
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Experiment: EXPERIMENT 2

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4364.91

Test 7 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

NO. (Hertz) per period per second Utilization

1 3.20 32 102.40 2.35 %

2 6.40 16 102.40 2.35 %

3 12.80 8 102.40 2.35 %

4 25.60 4 102.40 2.35 %

5 51.20 2 102.40 2.35 %

512.00 11.73 %

Experiment step size: 0.73 %

Test 7 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

! 312.500 32 0 0 0.000

2 156.250 64 0 0 0.000

3 78.125 128 0 0 0.000

4 39.063 256 0 0 0.000

5 19.531 512 0 0 0.000
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Test when deadlines first missed/skipped:
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Experiment: EXPERIMENT 2

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4364.91

Test 2 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

I 2.20 32 70.40 1.61%

2 4.40 16 70.40 1.61%

3 8.80 8 70.40 1.61%

4 17.60 4 70.40 1.61%

5 35.20 2 70.40 1.61%

352.00 8.06 %

Experiment step size: 0.73 %

Test 2 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

I 454.545 23 0 0 0.000

2 227.273 45 0 0 0.000

3 113.636 88 0 0 0.000

4 56.818 177 0 0 0.000

5 28.409 350 1 1 4.000
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Final test performed:

Experiment: EXPERIMENT 2

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4364.91

Test 8 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 3.40 32 108.80 2.49 %

2 6.80 16 108.80 2.49 %

3 13.60 8 108.80 2.49 %

4 27.20 4 108.80 2.49 %

5 54.40 2 108.80 2.49 %

544.00 12.46 %

Experiment step size: 0.73 %

Test 8 results:

Test duration (seconds): I0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 294.118 35 0 0 0.000

2 147.059 68 0 0 0.000

3 73.529 137 0 0 0.000

4 36.765 271 1 1 11.000

5 18.382 447 48 49 1.688
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Benchmark : Hartstone Benchmark, version 1.0

Compiler : Verdix 6.0 -> Sun SPARC

Target : Sun SPARC Station i+ (25 MHz) - multiuser mode

Characteristics of best test for this experiment:

(no missed/skipped deadlines)

Test 7 of Experiment 2

Raw (non-tasking) benchmark speed in KWIPS: 4364.91

Full task set:

Total Deadlines Task Set Total

Tasks Per Second Utilization KWIPS

5 99.20 11.73 % 512.00

Highest-frequency task:

Period Deadlines Task Task

(msec) Per Second Utilization KWIPS

19.531 51.20 2.35 % 102.40

Experiment step size: 0.73 %
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END OF HARTSTONE BENCHMARK SUMMARY RESULTS



_._Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 1 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

! 2.00 32 64.00 1.48 %

2 4.00 16 64.00 1.48 %

3 8.00 8 64.00 1.48 %

4 16.00 4 64.00 1.48 %

5 32.00 2 64.00 1.48 %

320.00 7.40 %

Experiment step size: 1.43 %

Test 1 results:

Test duration (seconds) : I0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000
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Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 2 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 33 66.00 1.53 %

2 4.00 17 68.00 1.57 %

3 8.00 9 72.00 1.67 %

4 16.00 5 80.00 1.85 %

5 32.00 3 96.00 2.22 %

Experiment step size: 1.43 %

382.00 8.84 %

Test 2 results:

Test duration (seconds): I0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 318 1 I 13.000
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Experiment : EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 3 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 34 68.00 1.57 %

2 4.00 18 72.00 1.67 %

3 8.00 i0 80.00 1.85 %

4 16.00 6 96.00 2.22 %

5 32.00 4 128.00 2.96 %

444.00 10.27 %

Experiment step size: 1.43 %

Test 3 results:

Test duration (seconds) : 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000
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Experiment : EXPERIMENT 3

Completion on: Miss/skip _0 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 4 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 35 70.00 1.62 %

2 4.00 19 76.00 1.76 %

3 8.00 11 88.00 2.04 %

4 16.00 7 112.00 2.59 %

5 32.00 5 160.00 3.70 %

506.00 11.70 %

Experiment step size: 1.43 %

Test 4 results:

Test duration (seconds) : I0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000
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Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 5 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 36 72.00 1.67 %

2 4.00 20 80.00 1.85 %

3 8.00 12 96.00 2.22 %

4 16.00 8 128.00 2.96 %

5 32.00 6 192.00 4.44 %

568.00 13.14 %

Experiment step size: 1.43 %

Test 5 results:

Test duration (seconds): I0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000



Experiment : EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 6 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 37 74.00 1.71%

2 4.00 21 84.00 1.94 %

3 8.00 13 104.00 2.41%

4 16.00 9 144.00 3.33 %

5 32.00 7 224.00 5.18 %

630.00 14.57 %

Experiment step size: 1.43 %

Test 6 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 318 1 1 7.000
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Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 7 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 38 76.00 1.76 %

2 4.00 22 88.00 2.04 %

3 8.00 14 112.00 2.59 %

4 16.00 i0 160.00 3.70 %

5 32.00 8 256.00 5.92 %

692.00 16.01%

Experiment step size: 1.43 %

Test 7 results:

Test duration (seconds): i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000
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Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 8 characteristics:

Task Frequency Kilo-Whets Kilo-whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 39 78.00 1.80 %

2 4.00 23 92.00 2.13 %

3 8.00 15 120.00 2.78 %

4 16.00 11 176.00 4.07 %

5 32.00 9 288.00 6.66 %

Experiment step size: 1.43 %

754.00 17.44 %

Test 8 results:

Test duration (seconds): i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000
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Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 9 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 40 80.00 1.85 %

2 4.00 24 96.00 2.22 %

3 8.00 16 128.00 2.96 %

4 16.00 12 192.00 4.44 %

5 32.00 10 320.00 7.40 %

816.00 18.87 %

Experiment step size: 1.43 %

Test 9 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000
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Experiment: EXPERIMENT 3

Completion on: Miss/skip _0 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 10 characteristics:

Task Frequency Kilo-Whets Kilo-whets Requested Workload

No. (Hertz) per period per second Utilization

I 2.00 41 82.00 1.90 %

2 4.00 25 100.00 2.31%

3 8.00 17 136.00 3.15 %

4 16.00 13 208.00 4.81%

5 32.00 11 352.00 8.14 %

878.00 20.31 %

Experiment step size: 1.43 %

Test i0 results:

Test duration (seconds): i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

! 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000
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Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test II characteristics:

Task Frequency Kilo-Whets Kilo-whets Requested Workload

No. (Hertz) per period per second Utilization
1 2.00 42 84.00 1.94 %

2 4.00 26 104.00 2.41%

3 8.00 18 144.00 3.33 %

4 16.00 14 224.00 5.18 %

5 32.00 12 384.00 8.88 %

940.00 21.74 %

Experiment step size: 1.43 %

Test ii results:

Test duration (seconds) : I0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000
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Experiment : EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 12 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 43 86.00 1.99 %

2 4.00 27 108.00 2.50 %

3 8.00 19 152.00 3.52 %

4 16.00 15 240.00 5.55 %

5 32.00 13 416.00 9.62 %

i002.00 23.18 %

Experiment step size: 1.43 %

Test 12 results:

Test duration (seconds): i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000
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Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 13 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 44 88.00 2.04 %

2 4.00 28 112.00 2.59 %

3 8.00 20 160.00 3.70 %

4 16.00 16 256.00 5.92 %

5 32.00 14 448.00 10.36 %

1064.00 24.61%

Experiment step size: 1.43 %

Test 13 results:

Test duration (seconds): I0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 318 1 1 8.000
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Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 14 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 45 90.00 2.08 %

2 4.00 29 116.00 2.68 %

3 8.00 21 168.00 3.89 %

4 16.00 17 272.00 6.29 %

5 32.00 15 480.00 11.10 %

1126.00 26.04 %

Experiment step size: 1.43 %

Test 14 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000
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Experiment: EXPERIMENT_3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 15 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

NO. (Hertz) per period per second Utilization
1 2.00 46 92.00 2.13 %

2 4.00 30 120.00 2.78 %

3 8.00 22 176.00 4.07 %

4 16.00 18 288.00 6.66 %

5 32.00 16 512.00 11.84 %

1188.00 27.48 %

Experiment step size: 1.43 %

Test 15 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

NO. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 318 1 1 20.000
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Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 16 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization
1 2.00 47 94.00 2.17 %

2 4.00 31 124.00 2.87 %

3 8.00 23 184.00 4.26 %

4 16.00 19 304.00 7.03 %

5 32.00 17 544.00 12.58 %

1250.00 28.91 %

Experiment step size: 1.43 %

Test 16 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000
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Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 17 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 48 96.00 2.22 %

2 4.00 32 128.00 2.96 %

3 8.00 24 192.00 4.44 %

4 16.00 20 320.00 7.40 %

5 32.00 18 576.00 13.32 %

Experiment step size: 1.43 %

1312.00 30.35 %

Test 17 results:

Test duration (seconds): i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 318 1 1 20.000
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Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 18 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 49 98.00 2.27 %

2 4.00 33 132.00 3.05 %

3 8.00 25 200.00 4.63 %

4 16.00 21 336.00 7.77 %

5 32.00 19 608.00 14.06 %

1374.00 31.78 %

Experiment step size: 1.43 %

Test 18 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000



Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 19 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 50 100.00 2.31%

2 4.00 34 136.00 3.15 %

3 8.00 26 208.00 4.81%

4 16.00 22 352.00 8.14 %

5 32.00 20 640.00 14.80 %

1436.00 33.21 %

Experiment step size: 1.43 %

Test 19 results:

Test duration (seconds): i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 318 1 1 3.000
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Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 20 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 51 102.00 2.36 %

2 4.00 35 140.00 3.24 %

3 8.00 27 216.00 5.00 %

4 16.00 23 368.00 8.51%

5 32.00 21 672.00 15.54 %

1498.00 34.65 %

Experiment step size: 1.43 %

Test 20 results:

Test duration (seconds): I0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000
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Experiment : EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 21 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization
1 2.00 52 104.00 2.41%

2 4.00 36 144.00 3.33 %

3 8.00 28 224.00 5.18 %

4 16.00 24 384.00 8.88 %

5 32.00 22 704.00 16.28 %

1560.00 36.08 %

Experiment step size: 1.43 %

Test 21 results:

Test duration (seconds): i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 318 1 1 1.000
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Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 22 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

NO. (Hertz) per period per second Utilization
i 2.00 53 106.00 2.45 %

2 4.00 37 148.00 3.42 %

3 8.00 29 232.00 5.37 %

4 16.00 25 400.00 9.25 %

5 32.00 23 736.00 17.02 %

1622.00 37.52 %

Experiment step size: 1.43 %

Test 22 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000
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Experiment : EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 23 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 54 108.00 2.50 %

2 4.00 38 152.00 3.52 %

3 8.00 30 240.00 5.55 %

4 16.00 26 416.00 9.62 %

5 32.00 24 768.00 17.76 %

1684.00 38.95 %

Experiment step size: 1.43 %

Test 23 results:

Test duration (seconds) : 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000



Experiment: EXPERIMENT 3

completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 24 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization
1 2.00 55 110.00 2.54 %

2 4.00 39 156.00 3.61%

3 8.00 31 248.00 5.74 %

4 16.00 27 432.00 9.99 %

5 32.00 25 800.00 18.50 %

1746.00 40.38 %

Experiment step size: 1.43 %

Test 24 results:

Test duration (seconds) : I0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000
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Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 25 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 56 112.00 2.59 %

2 4.00 40 160.00 3.70 %

3 8.00 32 256.00 5.92 %

4 16.00 28 448.00 10.36 %

5 32.00 26 832.00 19.24 %

1808.00 41.82 %

Experiment step size: 1.43 %

Test 25 results:

Test duration (seconds) : I0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000
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Experiment: EXPERIMENT 3

Completion on: Miss/skip _0 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 26 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

i 2.00 57 114.00 2.64 %

2 4.00 41 164.00 3.79 %

3 8.00 33 264.00 6.11%

4 16.00 29 464.00 10.73 %

5 32.00 27 864.00 19.98 %

1870.00 43.25 %

Experiment step size: 1.43 %

Test 26 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000
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Experiment : EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 27 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Kequested Workload

No. (Hertz) per period per second Utilization

1 2.00 58 116.00 2.68 %

2 4.00 42 168.00 3.89 %

3 8.00 34 272.00 6.29 %

4 16.00 30 480.00 11.10 %

5 32.00 28 896.00 20.72 %

1932.00 44.69 %

Experiment step size: 1.43 %

Test 27 results:

Test duration (seconds): i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000



3|HiiHiDiiD|RH|li|iflii||||l|R|BiBiRiRii||||ii|i|H|||fli|R|||||nii|Hi||

Experiment: EXPERIMENT 3

completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 28 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 59 118.00 2.73 %

2 4.00 43 172.00 3.98 %

3 8.00 35 280.00 6.48 %

4 16.00 31 496.00 11.47 %

5 32.00 29 928.00 21.46 %

1994.00 46.12 %

Experiment step size: 1.43 %

V

Test 28 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

i 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 318 I 1 2.000
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Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 29 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 60 120.00 2.78 %

2 4.00 44 176.00 4.07 %

3 8.00 36 288.00 6.66 %

4 16.00 32 512.00 11.84 %

5 32.00 30 960.00 22.20 %

2056.00 47.56 %

Experiment step size: 1.43 %

Test 29 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in n_ecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000
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Experiment: EXPERIMENT 3

Completion on: Miss/skip _0 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 30 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization
i 2.00 61 122.00 2.82 %

2 4.00 45 180.00 4.16 %

3 8.00 37 296.00 6.85 %

4 16.00 33 528.00 12.21%

5 32.00 31 992.00 22.94 %

2118.00 48.99 %

Experiment step size: 1.43 %

v

Test 30 results:

Test duration (seconds): i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 158 1 1 2.000

5 31.250 318 1 1 22.000

v
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Experiment : E_PERI_J_NT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 31 characteristics:

Task Frequency Kilo-Whets Kilo-whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 62 124.00 2.87 %

2 4.00 46 184.00 4.26 %

3 8.00 38 304.00 7.03 %

4 16.00 34 544.00 12.58 %

5 32.00 32 1024.00 23.69 %

2180.00 50.42 %

Experiment step size: 1.43 %

Test 31 results:

Test duration (seconds) : i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000
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Experiment: EXPERIMENT 3

Completion on: Miss/skip _0 deadlines

_aw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 32 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 63 126.00 2.91%

2 4.00 47 188.00 4.35 %

3 8.00 39 _ 312.00 7.22 %

4 16.00 35 560.00 12.95 %

5 32.00 33 1056.00 24.43 %

2242.00 51.86 %

Experiment step size: 1.43 %

Test 32 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 318 1 1 21.000
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Experiment : EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 33 characteristics:

Task Frequency Kilo-Whets Kilo-whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 64 128.00 2.96 %

2 4.00 48 192.00 4.44 %

3 8.00 40 320.00 7.40 %

4 16.00 36 576.00 13.32 %

5 32.00 34 1088.00 25.17 %

2304.00 53.29 %

Experiment step size: 1.43 %

Test 33 results:

Test duration (seconds) : 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000
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Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 34 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 65 130.00 3.01%

2 4.00 49 196.00 4.53 %

3 8.00 41 328.00 7.59 %

4 16.00 37 592.00 13.69 %

5 32.00 35 1120.00 25.91%

2366.00 54.73 %

Experiment step size: 1.43 %

Test 34 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)
i 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 318 1 1 6.000
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Experiment : EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 35 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 66 132.00 3.05 %

2 4.00 50 200.00 4.63 %

3 8.00 42 336.00 7.77 %

4 16.00 38 608.00 14.06 %

5 32.00 36 1152.00 26.65 %

2428.00 56.16 %

Experiment step size: 1.43 %

Test 35 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped
No. in msecs Deadlines Deadlines Deadlines

1 500.000 20 0 0

2 250.000 40 0 0

3 125.000 80 0 0

4 62.500 160 0 0

5 31.250 320 0 0

Average

Late (msec)

0.000

0.000

0.000

0.000

0.000



|N|N|BRNRN|||BB|||||H|R|N||||||R|R|R|BBIB|||||DiB|||RIIH||RNN|B|||UNBB|

Experiment: EXPERIMENT 3

completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 36 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 67 134.00 3.10 %

2 4.00 51 204.00 4.72 %

3 8.00 43 344.00 7.96 %

4 16.00 39 624.00 14.43 %

5 32.00 37 1184.00 27.39 %

2490.00 57.59 %

Experiment step size: 1.43 %

Test 36 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

I 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 318 1 1 26.000

:m _mmmmmm:mm _im_ims sx_slll_nnl|ll_nlnlnZIIlsn_u_snxEnEnlslxRxx_mm_ :msmmmmmmmmmmmmmmm_mmKsmmmmmBmmmsm_mm|mmmmmm



lalilinlilli|illliinalliliilHlil|RlllilgtilallillaSilHIIliiNillSlliNit!

Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 37 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 68 136.00 3.15 %

2 4.00 52 208.00 4.81%

3 8.00 44 352.00 8.14 %

4 16.00 40 640.00 14.80 %

5 32.00 38 1216.00 28.13 %

2552.00 59.03 %

Experiment step size: 1.43 %

Test 37 results:

Test duration (seconds): i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000
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Experiment: EXPERIMENT 3

completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 38 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 69 138.00 3.19 %

2 4.00 53 212.00 4.90 %

3 8.00 45 360.00 8.33 %

4 16.00 41 656.00 15.17 %

5 32.00 39 1248.00 28.87 %

2614.00 60.46 %

Experiment step size: 1.43 %

Test 38 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000
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Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Kaw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 39 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 70 140.00 3.24 %

2 4.00 54 216.00 5.00 %

3 8.00 46 368.00 8.51%

4 16.00 42 672.00 15.54 %

5 32.00 40 1280.00 29.61%

2676.00 61.90 %

Experiment step size: 1.43 %

Test 39 results:

Test duration (seconds): i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000
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Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 40 characteristics:

Task Frequency Kilo-Whets Kilo-Whets &equested Workload

No. (Hertz) per period per second Utilization
1 2.00 71 142.00 3.28 %

2 4.00 55 220.00 5.09 %

3 8.00 47 376.00 8.70 %

4 16.00 43 688.00 15.91%

5 32.00 41 1312.00 30.35 %

2738.00 63.33 %

Experiment step size: 1.43 %

Test 40 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000



Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 41 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 72 144.00 3.33 %

2 4.00 56 224.00 5.18 %

3 8.00 48 384.00 8.88 %

4 16.00 44 704.00 16.28 %

5 32.00 42 1344.00 31.09 %

2800.00 64.76 %

Experiment step size: 1.43 %

Test 41 results:

Test duration (seconds): i0.0

Task Period Met Missed Skipped Average

NO. in maecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000



I|flN_|flHi||i|NiNiiflB|NHHi|Hilg|o|||iHiH|i|iiiHiiHili|i|iiiiD

Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 42 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

I 2.00 73 146.00 3.38 %

2 4.00 57 228.00 5.27 %

3 8.00 49 392.00 9.07 %

4 16.00 45 720.00 16.65 %

5 32.00 43 1376.00 31.83 %

2862.00 66.20 %

Experiment step size: 1.43 %

Test 42 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000



_m_mm|mum_mmm_m_1_imm_a_m_N_mmm_m|_m|_|mmmm_mmmm_|mmmumu_mm_m_mm_m

Experiment : EXPERIMENT 3

Completion on: Miss/skip _0 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 43 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 74 148.00 3.42 %

2 4.00 58 232.00 5.37 %

3 8.00 50 400.00 9.25 %

4 16.00 46 736.00 17.02 %

5 32.00 44 1408.00 32.57 %

2924.00 67.63 %

Experiment step size: 1.43 %

Test 43 results:

Test duration (seconds) : 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 78 1 1 2.000

4 62.500 160 0 0 0.000

5 31.250 318 1 1 26.000
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Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 44 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization
1 2.00 75 150.00 3.47 %

2 4.00 59 236.00 5.46 %

3 8.00 51 408.00 9.44 %

4 16.00 47 752.00 17.39 %

5 32.00 45 1440.00 33.31%

2986.00 69.07 %

Experiment step size: 1.43 %

Test 44 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000
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Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 45 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

NO. (Hertz) per period . per second Utilization

1 2.00 76 152.00 3.52 %

2 4.00 60 240.00 5.55 %

3 8.00 52 416.00 9.62 %

4 16.00 48 768.00 17.76 %

5 32.00 46 1472.00 34.05 %

3048.00 70.50 %

Experiment step size: 1.43 %

Test 45 results:

Test duration (seconds) : 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 158 1 1 25.000

5 31.250 318 1 1 28.000



Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Kaw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 46 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

l 2.00 77 154.00 3.56 %

2 4.00 61 244.00 5.64 %

3 8.00 53 424.00 9.81%

4 16.00 49 784.00 18.13 %

5 32.00 47 1504.00 34.79 %

3110.00 71.93 %

Experiment step size: 1.43 %

Test 46 results:

Test duration (seconds): I0.0

Task Period Met Missed Skipped

No. in msecs Deadlines Deadlines Deadlines

1 500.000 20 0 0

2 250.000 40 0 0

3 125.000 80 0 0

4 62.500 160 0 0

5 31.250 320 0 0

Average
Late (msec)

0.000

0.000

0.000

0.000

0.000



Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions

Test 47 characteristics:

Per Second (KWIPS) : 4323.39

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 78 156.00 3.61%

2 4.00 62 248.00 5.74 %

3 8.00 54 432.00 9.99 %

4 16.00 50 800.00 18.50 %

5 32.00 48 1536.00 35.53 %

3172.00 73.37 %

Experiment step size: 1.43 %

Test 47 results:

Test duration (seconds): i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 158 1 1 27.000

5 31.250 318 1 1 20.000
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Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 48 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization
1 2.00 79 158.00 3.65 %

2 4.00 63 252.00 5.83 %

3 8.00 55 440.00 10.18 %

4 16.00 51 816.00 18.87 %

5 32.00 49 1568.00 36.27 %

3234.00 74.80 %

Experiment step size: 1.43 %

Test 48 results:

Test duration (seconds) : I0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000

V
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Experiment : EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 49 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 80 160.00 3.70 %

2 4.00 64 256.00 5.92 %

3 8.00 56 448.00 10.36 %

4 16.00 52 832.00 19.24 %

5 32.00 50 1600.00 37.01%

3296.00 76.24 %

Experiment step size: 1.43 %

Test 49 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 318 1 1 9.000



Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 50 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 81 162.00 3.75 %

2 4.00 65 260.00 6.01%

3 8.00 57 456.00 10.55 %

4 16.00 53 848.00 19.61%

5 32.00 51 1632.00 37.75 %

3358.00 77.67 %

Experiment step size: 1.43 %

Test 50 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000



lilllllllilillliinilNi|NmNinliilillNllliNNNiilmli|ll NiBiNIBNNNIRNNB|NN

Experiment : EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 51 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 82 164.00 3.79 %

2 4.00 66 264.00 6.11%

3 8.00 58 464.00 10.73 %

4 16.00 54 864.00 19.98 %

5 32.00 52 1664.00 38.49 %

3420.00 79.10 %

Experiment step size: 1.43 %

Test 51 results:

Test duration (seconds): i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 158 1 1 2.000

5 31.250 318 1 1 17.000
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Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 52 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 83 166.00 3.84 %

2 4.00 67 268.00 6.20 %

3 8.00 59 472.00 10.92 %

4 16.00 55 880.00 20.35 %

5 32.00 53 1696.00 39.23 %

3482.00 80.54 %

Experiment step size: 1.43 %

Test 52 results:

Test duration (seconds) : I0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000

V
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Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 53 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 84 168.00 3.89 %

2 4.00 68 272.00 6.29 %

3 8.00 60 480.00 11.10 %

4 16.00 56 896.00 20.72 %

5 32.00 54 1728.00 39.97 %

3544.00 81.97 %

Experiment step size: 1.43 %

Test 53 results:

Test duration (seconds): i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000
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Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 54 characteristics:

Task Frequency Kilo-Whets Kilo-Whets &equested Workload

No. (Hertz) per period per second Utilization

1 2.00 85 170.00 3.93 %

2 4.00 69 276.00 6.38 %

3 8.00 61 488.00 11.29 %

4 16.00 57 912.00 21.09 %

5 32.00 55 1760.00 40.71%

3606.00 83.41 %

Experiment step size: 1.43 %

Test 54 results:

Test duration (seconds): I0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000
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Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 55 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization
1 2.00 86 172.00 3.98 %

2 4.00 70 280.00 6.48 %

3 8.00 62 496.00 11.47 %

4 16.00 58 928.00 21.46 %

5 32.00 56 1792.00 41.45 %

3668.00 84.84 %

Experiment step size: 1.43 %

Test 55 results:

Test duration (seconds): i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000



Experiment: EXPERIMENT 3

completion on: Miss/skip 50 deadlines

&aw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 56 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

i 2.00 87 174.00 4.02 %

2 4.00 71 284.00 6.57 %

3 8.00 63 504.00 11.66 %

4 16.00 59 944.00 21.83 %

5 32.00 57 1824.00 42.19 %

3730.00 86.27 %

Experiment step size: 1.43 %

Test 56 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 302 9 9 0.222
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Experiment : EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 57 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 88 176.00 4.07 %

2 4.00 72 288.00 6.66 %

3 8.00 64 512.00 11.84 %

4 16.00 60 960.00 22.20 %

5 32.00 58 1856.00 42.93 %

3792.00 87.71%

Experiment step size: 1.43 %

Test 57 results:

Test duration (seconds): i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 18 1 1 1.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000
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Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 58 characteristics:

Task Frequency Kilo-Whets Kilo-whets Requested Workload

No. (Hertz) per period per second Utilization

I 2.00 89 178.00 4.12 %

2 4.00 73 292.00 6.75 %

3 8.00 65 520.00 12.03 %

4 16.00 61 976.00 22.57 %

5 32.00 59 1888.00 43.67 %

3854.00 89.14 %

Experiment step size: 1.43 %

Test 58 results:

Test duration (seconds) : I0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 38 1 1 70.000

3 125.000 80 0 0 0.000

4 62.500 158 1 1 34.000

5 31.250 318 i 1 31.000
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Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 59 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 90 180.00 4.16 %

2 4.00 74 296.00 6.85 %

3 8.00 66 528.00 12.21%

4 16.00 62 992.00 22.94 %

5 32.00 60 1920.00 44.41%

3916.00 90.58 %

Experiment step size: 1.43 %

Test 59 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 14 3 3 40.333

2 250.000 32 4 4 49.250

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000
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Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 60 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 91 182.00 4.21%

2 4.00 75 300.00 6.94 %

3 8.00 67 536.00 12.40 %

4 16.00 63 1008.00 23.32 %

5 32.00 61 1952.00 45.15 %

3978.00 92.01 %

Experiment step size: i. 43 %

Test 60 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 10 5 5 369.200

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 140 I0 i0 4.300

5 31.250 311 4 5 8.000

V ¸



Experiment : EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Kaw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 61 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

NO. (Hertz) per period per second Utilization

1 2.00 92 184.00 4.26 %

2 4.00 76 304.00 7.03 %

3 8.00 68 544.00 12.58 %

4 16.00 64 1024.00 23.69 %

5 32.00 62 1984.00 45.89 %

4040.00 93.45 %

Experiment step size: 1.43 %

Test 61 results:

Test duration (seconds): i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 0 4 16 1812.750

2 250.000 36 2 2 69.500

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000
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Experiment: EXPERIMENT_3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 62 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

I 2.00 93 186.00 4.30 %

2 4.00 77 308.00 7.12 %

3 8.00 69 552.00 12.77 %

4 16.00 65 1040.00 24.06 %

5 32.00 63 2016.00 46.63 %

4102.00 94.88 %

Experiment step size: 1.43 %

Test 62 results:

Test duration (seconds): i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 3 9 8 176.222

2 250.000 10 15 15 56.000

3 125.000 56 12 12 1.750

4 62.500 158 1 1 12.000

5 31.250 318 1 1 29.000
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HARTSTONE BENCHMARK SUMMARY RESULTS

Baseline test:
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Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 1 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 32 64.00 1.48 %

2 4.00 16 64.00 1.48 %

3 8.00 8 64.00 1.48 %

4 16.00 4 64.00 1.48 %

5 32.00 2 64.00 1.48 %

320.00 7.40 %

Experiment step size: 1.43 %

_est 1 results:

Test duration (seconds) : I0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000

_N|tiNillUNillllNlilii|llilliiNtiintiliilNllNiNlilitliilNtNlilllilnlllll



Last test with no missed/skipped deadlines:
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Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 55 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

NO. (Hertz) per period per second Utilization

1 2.00 86 172.00 3.98 %

2 4.00 70 280.00 6.48 %

3 8.00 62 496.00 11.47 %

4 16.00 58 928.00 21.46 %

5 32.00 56 1792.00 41.45 %

3668.00 84.84 %

Experiment step size: 1.43 %

Test 55 results:

Test duration (seconds): i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000

v



Test when deadlines first missed/skipped:

Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 2 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization
1 2.00 33 66.00 1.53 %

2 4.00 17 68.00 1.57 %

3 8.00 9 72.00 1.67 %

4 16.00 5 80.00 1.85 %

5 32.00 3 96.00 2.22 %

382.00 8.84 %

Experiment step size: 1.43 %

Test 2 results:

Test duration (seconds): i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 318 1 1 13.000
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Final test performed:
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Experiment: EX2ERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39

Test 62 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 93 186.00 4.30 %

2 4.00 77 308.00 7.12 %

3 8.00 69 552.00 12.77 %

4 16.00 65 1040.00 24.06 %

5 32.00 63 2016.00 46.63 %

4102.00 94.88 %

Experiment step size: 1.43 %

Test 62 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 3 9 8 176.222

2 250.000 10 15 15 56.000

3 125.000 56 12 12 1.750

4 62.500 158 1 1 12.000

5 31.250 318 1 1 29.000
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Benchmark : Hartstone Benchmark, version 1.0

Compiler : Verdix 6.0 -> Sun SPARC

Target : Sun SPARC Station i+ (25 MHz) - multiuser mode

Characteristics of best test for this experiment:

(no missed/skipped deadlines)

Test 55 of Experiment 3

Raw (non-tasking) benchmark speed in KWIPS: 4323.39

Full task set:

Total Deadlines Task Set Total

Tasks Per Second Utilization KWIPS

5 62.00 84.84 % 3668.00

Highest-frequency task:

Period Deadlines Task Task

(msec) Per Second Utilization KWIPS

31.250 32.00 41.45 % 1792.00

Experiment step size: 1.43 %

END OF HARTSTONE BENCHMARK SUMMARY RESULTS





_Experiment: EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4476.28

Test 1 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 32 64.00 1.43 %

2 4.00 16 64.00 1.43 %

3 8.00 8 64.00 1.43 %

4 16.00 4 64.00 1.43 %

5 32.00 2 64.00 1.43 %

320.00 7.15 %

Experiment step size: 1.43 %

Test i results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000



Experiment: EXPERIMENT 4

Completion on: Miss/skip _0 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second

Test 2 characteristics:

(KWIPS) : 4476.28

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

NO. (Hertz) per period per second Utilization

1 2.00 32 64.00 1.43 %

2 4.00 16 64.00 1.43 %

3 8.00 8 64.00 1.43 %

4 16.00 4 64.00 1.43 %

5 32.00 2 64.00 1.43 %

6 8.00 8 64.00 1.43 %

384.00 8.58 %

Experiment step size: 1.43 %

Test 2 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000

6 125.000 80 0 0 0.000
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Experiment : EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4476.28

Test 3 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 32 64.00 1.43 %

2 4.00 16 64.00 1.43 %

3 8.00 8 64.00 1.43 %

4 16.00 4 64.00 1.43 %

5 32.00 2 64.00 1.43 %

6 8.00 8 64.00 1.43 %

7 8.00 8 64.00 1.43 %

448.00 I0.01%

Experiment step size: 1.43 %

Test 3 results:

Test duration (seconds) : I0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000

6 125.000 80 0 0 0.000

7 125.000 80 0 0 0.000
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Experiment: EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4476.28

Test 4 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 32 64.00 1.43 %

2 4.00 16 64.00 1.43 %

3 8.00 8 64.00 1.43 %

4 16.00 4 64.00 1.43 %

5 32.00 2 64.00 1.43 %

6 8.00 8 64.00 1.43 %

7 8.00 8 64.00 1.43 %

8 8.00 8 64.00 1.43 %

512.00 11.44 %

Experiment step size: 1.43 %

Test 4 results:

Test duration (seconds) : i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 318 1 1 2.000

6 125.000 80 0 0 0.000

7 125.000 80 0 0 0.000

8 125.000 80 0 0 0.000
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Experiment: EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4476.28

Test 5 characteristics:

Task

No.

1

2

3

4

5

6

7

8

9

Frequency

(Hertz)

2.00

4 00

8 00

16 00

32 00

8 00

8 00

8 00

8.00

Kilo-Whets Kilo-Whets Requested Workload

per period per second Utilization
32 64.00 1.43 %

16 64.00 1.43 %

8 64.00 1.43 %

4 64.00 1.43 %

2 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

576.00 12.87 %

Experiment step size: 1.43 %

Test 5 results:

_rest duration (seconds): I0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000

6 125.000 80 0 0 0.000

7 125.000 80 0 0 0.000

8 125.000 80 0 0 0.000

9 125.000 80 0 0 0.000
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Experiment: EXPERIMENT 4

completion on: Miss/skip _0 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4476.28

Test 6 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization
1 2.00 32 64.00 1.43 %

2 4.00 16 64.00 1.43 %

3 8.00 8 64.00 1.43 %

4 16.00 4 64.00 1.43 %

5 32.00 2 64.00 1.43 %

6 8.00 8 64.00 1.43 %

7 8.00 8 64.00 1.43 %

8 8.00 8 64.00 1.43 %

9 8.00 8 64.00 1.43 %

10 8.00 8 64.00 1.43 %

640.00 14.30 %

Experiment step size: 1.43 %

Test 6 results:

Test duration (seconds): I0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000

6 125.000 80 0 0 0.000

7 125.000 80 0 0 0.000

8 125.000 80 0 0 0.000

9 125.000 80 0 0 0.000

10 125.000 80 0 0 0.000



Experiment: EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4476.28

Test 7 characteristics:

Task Frequency Kilo-Whets Kilo-Whets

No. (Hertz) per period per second

1 2.00 32 64.00

2 4.00 16 64.00

3 8.00 8 64.00

4 16.00 4 64.00

5 32.00 2 64.00

6 8.00 8 64.00

7 8.00 8 64.00

8 8.00 8 64.00

9 8.00 8 64.00

i0 8.00 8 64.00

Ii 8.00 8 64.00

Requested Workload
Utilization

1 43 %

143%

143%

143%

1 43 %

1 43 %

1 43 %

1 43 %

1 43 %

1 43 %

1 43 %

704.00 15.73 %

Experiment step size: 1.43 %

-___fest 7 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped

No. in msecs Deadlines Deadlines Deadlines

1 500.000 20 0 0

2 250.000 40 0 0

3 125.000 80 0 0

4 62.500 160 0 0

5 31.250 320 0 0

6 125.000 80 0 0

7 125.000 80 0 0

8 125.000 80 0 0

9 125.000 80 0 0

i0 125.000 80 0 0

Ii 125.000 80 0 0

Average

Late (msec)

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0.000

0.000

0.000
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Experiment: EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28

Test 8 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization
1 2.00 32 64.00 1.43 %

2 4.00 16 64.00 1.43 %

3 8.00 8 64.00 1.43 %

4 16.00 4 64.00 1.43 %

5 32.00 2 64.00 1.43 %

6 8.00 8 64.00 1.43 %

7 8.00 8 64.00 1.43 %

8 8.00 8 64.00 1.43 %

9 8.00 8 64.00 1.43 %

10 8.00 8 64.00 1.43 %

11 8.00 8 64.00 1.43 %

12 8.00 8 64.00 1.43 %

768.00 17.16 %

Experiment step size: 1.43 %

Test 8 results:

TeSt duration (seconds): I0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000

6 125.000 80 0 0 0.000

7 125.000 80 0 0 0.000

8 125.000 80 0 0 0.000

9 125.000 80 0 0 0.000

i0 125.000 80 0 0 0.000

ii. 125.000 80 0 0 0.000

12 125.000 80 0 0 0.000
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Experiment: EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4476.28

Test 9 characteristics:

Task Frequency Kilo-Whets Kilo-Whets

No. (Hertz) per period per second

1 2.00 32 64.00

2 4.00 16 64.00

3 8.00 8 64.00

4 16.00 4 64.00

5 32.00 2 64.00

6 8.00 8 64.00

7 8.00 8 64.00

8 8.00 8 64.00

9 8.00 8 64.00

10 8.00 8 64.00

ii 8.00 8 64.00

12 8.00 8 64.00

13 8.00 8 64.00

832.00

Requested Workload

Utilization

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

18.59 %

Experiment step size: 1.43 %

Test 9 results:

Test duration (seconds) : 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (_Lsec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000

6 125.000 80 0 0 0.000

7 125.000 80 0 0 0.000

8 125.000 80 0 0 0.000

9 125.000 80 0 0 0.000

10 125.000 80 0 0 0.000

ii 125.000 80 0 0 0.000

12 125.000 80 0 0 0.000

13 125.000 80 0 0 0.000



Experiment : EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4476.28

Test i0 characteristics:

Task

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Frequency

(Hertz)

2.00

4.00

8.00

16.00

32.00

8.00

8 00

8 00

8 00

8 00

8 00

8 00

8 00

8 00

Kilo-Whets Kilo-Whets Requested Workload

per period per second Utilization

32 64.00 1.43 %

16 64.00 1.43 %

8 64.00 1.43 %

4 64.00 1.43 %

2 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

896.00 20.02 %

Experiment step size: 1.43 %

V _

Test i0 results:

Test duration (seconds) : i0.0

Task

No.

1

2

3

4

5

6

7

8

9

I0

ii

12

13

14

Period

in msecs

5O0 000

250 000

125 000

62 500

31 250

125 000

125 000

125 000

125 000

125 000

125 000

125 000

125 000

125 000

Met Missed Skipped

Deadlines Deadlines Deadlines

20 0 0

4O 0 0

80 0 0

160 0 0

320 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

Average

Late (msec)

0.000

0.000

0.000

0.000

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0.000
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Experiment: EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28

Test II characteristics:

Task Frequency Kilo-Whets Kilo-whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 32 64.00 1.43 %

2 4.00 16 64.00 1.43 %

3 8.00 8 64.00 1.43 %

4 16.00 4 64.00 1.43 %

5 32.00 2 64.00 1.43 %

6 8.00 8 64.00 1.43 %

7 8.00 8 64.00 1.43 %

8 8.00 8 64.00 1.43 %

9 8.00 8 64.00 1.43 %

i0 8.00 8 64.00 1.43 %

ii 8.00 8 64.00 1.43 %

12 8.00 8 64.00 1.43 %

13 8.00 8 64.00 1.43 %

14 8.00 8 64.00 1.43 %

15 8.00 8 64.00 1.43 %

ixperiment step size: 1.43 %

960.00 21.45 %

Test II results:

Test duration (seconds): i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000

6 125.000 80 0 0 0.000

7 125.000 80 0 0 0.000

8 125.000 80 0 0 0.000

9 125.000 80 0 0 0.000

I0 125.000 80 0 0 0.000

ii 125.000 80 0 0 0.000

12 125.000 80 0 0 0.000

13 125.000 80 0 0 0.000

14 125.000 80 0 0 0.000

15 125.000 80 0 0 0.000



Experiment : EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4476.28

Test 12 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization
1 2.00 32 64.00 1.43 %

2 4.00 16 64.00 1.43 %

3 8.00 8 64.00 1.43 %

4 16.00 4 64.00 1.43 %

5 32.00 2 64.00 1.43 %

6 8.00 8 64.00 1.43 %

7 8.00 8 64.00 1.43 %

8 8.00 8 64.00 1.43 %

9 8.00 8 64.00 1.43 %

10 8.00 8 64.00 1.43 %

11 8.00 8 64.00 1.43 %

12 8.00 8 64.00 1.43 %

13 8.00 8 64.00 1.43 %

14 8.00 8 64.00 1.43 %

15 8.00 8 64.00 1.43 %

16 8.00 8 64.00 1.43 %

1024.00 22.88 %

Experiment step size: 1.43 %

Test 12 results:

Test duration (seconds): i0.0

Task

No.

1

2

3

4

5

6

7

8

9

i0

ii

12

13

14

15

16

Period

in msecs

500.000

250.000

125 000

62 500

31 250

125 000

125 000

125 000

125 000

125 000

125 000

125 000

125.000

125.000

125.000

125.000

Met Missed Skipped

Deadlines Deadlines Deadlines

20 0 0

40 0 0

80 0 0

160 0 0

320 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

Average

Late (msec)

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0 000
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Experiment : EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (I_IPS) : 4476.28

Test 13 characteristics:

Task

No.

1

2

3

4

5

6

7

8

9

I0

Ii

12

13

14

15

16

17

Frequency

(Hertz)

2.00

4.00

8.00

16.00

32.00

8.00

8.00

8.00

8 O0

8 O0

8 O0
8 O0

8 O0

8 O0
8 O0

8 O0

8 O0

Kilo-Whets

per period
32

16

8

4

2

8

8

8

8

8

8

8

8

8

8

8

8

Kilo-Whets

per second
64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

Requested Workload
Utilization

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

143 %

143%

143%

143%

143%

143%

143%

143%

143%

143%

143%

1088.00 24.31%

Experiment step size: 1.43 %

Test 13 results:

Test duration (seconds): 10.0

Task

No.

1

2

3

4

5

6

7

8

9

I0

ll

12

13

14

15

16

17

Period

in msecs

500.0O0

250.000

125.000

62.500

31.250

125.000

125.000

125.000

125.000

125.000

125 000

125 000

125 000

125 000

125 000

125 000

125 000

Met Missed Skipped Average

Deadlines Deadlines Deadlines Late (msec)

20 0 0 0.000

40 0 0 0.000

80 0 0 0.000

160 0 0 0.000

320 0 0 0.000

80 0 0 0.000

80 0 0 0.000

80 0 0 0.000

80 0 0 0.000

80 0 0 0.000

80 0 0 0.000

80 0 0 0.000

80 0 0 0.000

80 0 0 0.000

80 0 0 0.000

80 0 0 0.000

80 0 0 0.000
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Experiment: EXPERIMENT 4

Completion on: Miss/skip 50

Raw speed in Kilo-Whetstone

Test 14 characteristics:

deadlines

Instructions Per Second (KWIPS): 4476.28

Task Frequency Kilo-Whets

No. (Hertz) per period

1 2.00 32

2 4.00 16

3 8.00 8

4 16.00 4

5 32.00 2

6 8.00 8

7 8.00 8

8 8.00 8

9 8.00 8

10 8.00 8

11 8.00 8

12 8.00 8

13 8.00 8

14 8.00 8

15 8.00 8

16 8.00 8

17 8.00 8

18 8.00 8

Kilo-Whets

per second
64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

Requested Workload

Utilization

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1152.00 25.74 %

Experiment step size: 1.43 %

Test 14 results:

Test duration (seconds): I0.0

Task Period Met Missed Skipped

No. in msecs Deadlines Deadlines Deadlines

1 500.000 20 0 0

2 250.000 40 0 0

3 125.000 80 0 0

4 62.500 160 0 0

5 31.250 320 0 0

6 125.000 80 0 0

7 125.000 80 0 0

8 125.000 80 0 0

9 125.000 80 0 0

i0 125.000 80 0 0

Ii 125.000 80 0 0

12 125.000 80 0 0

13 125.000 80 0 0

14 125.000 80 0 0

15 125.000 80 0 0

16 125.000 80 0 0

17 125.000 80 0 0

18 125.000 80 0 0

Average

Late (msec)

0.000

0.000

0.000

0.000

0 000

0 000

0 000

0 000

0 000

0 000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000
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Experiment: EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Kaw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4476.28

Test 15 characteristics:

Task Frequency Kilo-Whets

No. (Hertz) per period

1 2.00 32

2 4.00 16

3 8.00 8

4 16.00 4

5 32.00 2

6 8.00 8

7 8.00 8

B 8.00 8

9 8.00 8

10 8.00 8

ii 8.00 8

12 8.00 8

13 8.00 8

14 8.00 8

15 8.00 8

16 8.00 8

17 8.00 8

18 8.00 8

19 8.00 8

Kilo-Whets

per second
64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64 00

64 00

64 00

64 00

64 00

64 00

64 00

64 00

Requested Workload

Utilization

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1216.00 27.17 %

Experiment step size: 1.43 %



Test 15 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 318 1 1 I0.000
6 125.000 80 0 0 0.000
7 125.000 80 0 0 0.000

8 125.000 80 0 0 0.000

9 125.000 80 0 0 0.000

10 125.000 80 0 0 0.000

ii 125.000 80 0 0 0.000

12 125.000 80 0 0 0.000

13 125.000 80 0 0 0.000

14 125.000 80 0 0 0.000

15 125.000 80 0 0 0.000

16 125.000 80 0 0 0.000

17 125.000 80 0 0 0.000

18 125.000 80 0 0 0.000

19 125.000 80 0 0 0.000
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Experiment: EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4476.28

Test 16 characteristics:

Task Frequency Kilo-Whets Kilo-Whets

No. (Hertz) per period per second

1 2.00 32 64.00

2 4.00 16 64.00

3 8.00 8 64.00

4 16.00 4 64.00

5 32.00 2 64.00

6 8.00 8 64.00

7 8.00 8 64.00

8 8.00 8 64.00

9 8.00 8 64.00

10 8.00 8 64.00

II 8.00 8 64.00

12 8.00 8 64.00

13 8.00 8 64.00

14 8.00 8 64.00

15 8.00 8 64.00

16 8.00 8 64.00

17 8.00 8 64.00

18 8.00 8 64.00

19 8.00 8 64.00

20 8.00 8 64.00

Requested Workload

Utilization

143%

143%

143%

143%

143%

143%

143%

143%

143%

143%

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1280.00 28.60 %

Experiment step size: 1.43 %



Test 16 results:

Test duration (seconds): i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000

6 125.000 80 0 0 0.000

7 125.000 80 0 0 0.000

8 125.000 80 0 0 0.000

9 125.000 80 0 0 0.000

10 125.000 80 0 0 0.000

11 125.000 80 0 0 0.000

12 125.000 80 0 0 0.000

13 125.000 80 0 0 0.000

14 125.000 80 0 0 0.000

15 125.000 80 0 0 0.000

16 125.000 80 0 0 0.000

17 125.000 80 0 0 0.000

18 125.000 80 0 0 0.000

19 125.000 80 0 0 0.000

20 125.000 80 0 0 0.000
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Experiment : EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4476.28

Test 17 characteristics:

Task

No.

1

2

3

4

5

6

7

8

9

i0

ii

12

13

14

15

16

17

18

19

20

21

Frequency

(Hertz)

2.00

4.00

8.00

16.00

32.00

8 00

8 00

8 00

8 00

8 00

8 00

8 00

8 00

8 00

8 00

8 00

8 00

8.00

8.00

8.00

8.00

Kilo-Whets

per period
32

16

8

4

2

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

Kilo-Whets

per second
64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

Kequested Workload

Utilization

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

143%

143%

143%

143%

143%

143%

1344.00 30.02 %

Experiment step size: 1.43 %
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Test 17 results:

Test duration (seconds) : i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 318 1 1 4.000

6 125.000 80 0 0 0.000

7 125.000 80 0 0 0.000

8 125.000 80 0 0 0.000

9 125.000 80 0 0 0.000

i0 125.000 80 0 0 0.000

II 125.000 80 0 0 0.000

12 125.000 80 0 0 0.000

13 125.000 80 0 0 0.000

14 125.000 80 0 0 0.000

15 125.000 80 0 0 0.000

16 125.000 80 0 0 0.000

17 125.000 80 0 0 0.000

18 125.000 80 0 0 0.000

19 125.000 80 0 0 0.000

20 125.000 80 0 0 0.000

21 125.000 80 0 0 0.000
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Experiment : EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4476.28

Test 18 characteristics:

Task

No.

1

2

3

4

5

6

7

8

9

i0

ii

12

13

14

15

16

17

18

19

20

21

22

Frequency

(Hertz)

2 00

4 00

8 00

16 00

32 00

8 00

8 00

8 00

8 00

8 00

8.00

8.00

8.00

8.00

8.00

8.00

8 O0

8 O0

8 O0

8 O0

8 O0

8 O0

Kilo-Whets

per period

32

16

8

4

2

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

Kilo-Whets

per second

64.00

64.00

64.00

64.00

64,00

64,00

64,00

64,00

64,00

6400

6400

64 00

64,00

6400

64 00

6400

6400

64,00

64,00

64.00

64.00

64.00

Requested Workload
Utilization

143%

143%

143%

143%

143%

143%

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1408.00 31.45 %

Experiment step size: 1.43 %



Test 18 results:

TeSt duration (seconds): i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000

6 125.000 80 0 0 0.000

7 125.000 80 0 0 0.000

8 125.000 80 0 0 0.000

9 125.000 80 0 0 0.000

I0 125.000 80 0 0 0.000

Ii 125.000 80 0 0 0.000

12 125.000 80 0 0 0.000

13 125.000 80 0 0 0.000

14 125.000 80 0 0 0.000

15 125.000 80 0 0 0.000

16 125.000 80 0 0 0.000

17 125.000 80 0 0 0.000

18 125.000 80 0 0 0.000

19 125.000 80 0 0 0.000

20 125.000 80 0 0 0.000

21 125.000 80 0 0 0.000

22 125.000 80 0 0 0.000
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Experiment: EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4476.28

Test 19 characteristics:

Task

No.

1

2

3

4

5

6

7

8

9

I0

ii

12

13

14

15

16

17

18

19

20

21

22

23

Frequency
(Hertz)

2.00

4.00

8.00

16.00

32.00

8.00

8.00

8.00

8.00

8.00

8 00

8 00

8 00

8 00

8 00

8 00

8 00

8 00

8 00

8 00

8 00

8.00

8.00

Kilo-Whets

per period
32

16

8

4

2

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

Kilo-Whets

per second

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64 00

64 00

64 00

64 00

64 00

64 00

64 00

64.00

64.00

64.00

64.00

64.00

1472.00

Requested Workload
Utilization

1 43 %

1 43 %

143%

143%

143%

1 43 %

1 43 %

1.43 %

1.43 %

1.43 %

1.43 %

1 43 %

1 43 %

1 43 %

1 43 %

1 43 %

1 43 %

1 43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

32.88 %

Experiment step size: 1.43 %



Test 19 results:

Test duration (seconds) : i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 318 1 1 7.000

6 125.000 80 0 0 0.000

7 125.000 80 0 0 0.000

8 125.000 80 0 0 0.000

9 125.000 80 0 0 0.000

10 125.000 80 0 0 0.000

11 125.000 80 0 0 0.000

12 125.000 80 0 0 0.000

13 125.000 80 0 0 0.000

14 125.000 80 0 0 0.000

15 125.000 80 0 0 0.000

16 125.000 80 0 0 0.000

17 125.000 80 0 0 0.000

18 125.000 80 0 0 0.000

19 125.000 80 0 0 0.000

20 125.000 80 0 0 0.000

21 125.000 80 0 0 0.000

22 125.000 80 0 0 0.000

23 125.000 80 0 0 0.000



Experiment : EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4476.28

Test 20 characteristics:

v

Task Frequency Kilo-Whets

No. (Hertz) per period

1 2.00 32

2 4.00 16

3 8.00 8

4 16.00 4

5 32.00 2

6 8.00 8

7 8.00 8

8 8.00 8

9 8.00 8

i0 8.00 8

II 8.00 8

12 8.00 8

13 8.00 8

14 8.00 8

15 8.O0 8

16 8.00 8

17 8.00 8

18 8.O0 8

19 8.00 8

20 8.00 8

21 8.00 8

22 8.00 8

23 8.00 8

24 8.00 8

Kilo-Whets

per second

64 00

64 00

64 00

64 00

64 00

64 00

64 00

64 00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

Requested Workload

Utilization

143%

143%

143%

143%

143%

143%

143%

143%

143%

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1536.00 34.31%

Experiment step size: 1.43 %



Test 20 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000

6 125.000 80 0 0 0.000

7 125.000 80 0 0 0.000

8 125.000 80 0 0 0.000

9 125.000 80 0 0 0.000

10 125.000 80 0 0 0.000

11 125.000 80 0 0 0.000

12 125.000 80 0 0 0.000

13 125.000 80 0 0 0.000

14 125.000 80 0 0 0.000

15 125.000 80 0 0 0.000

16 125.000 80 0 0 0.000

17 125.000 80 0 0 0.000

18 125.000 80 0 0 0.000

19 125.000 80 0 0 0.000

20 125.000 80 0 0 0.000

21 125.000 80 0 0 0.000

22 125.000 80 0 0 0.000

23 125.000 80 0 0 0.000

24 125.000 80 0 0 0.000
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Experiment : EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28

Test 21 characteristics:

Task

No.

1

2

3

4

5

6

7

8

9

i0

ii

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Frequency

(Hertz)

2.00

4.00

8.00

16.00

32.00

8.00

8.00

8.00

8.00

8.00
8.00

8.00

8.00

8.00

8.00

8.00

8.00

8 00

8 00

8 00

8 00

8 00

8 00

8 00

8 00

Kilo-Whets

per period
32

16

8

4

2

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

Kilo-Whets

per second

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64,00

64,00

64,00

64,00

64 00

64 00

64 00

64 00

64 00

64 00

Requested Workload
Utilization

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1600.00 35.74 %

Experiment step size: 1.43 %



Test 21 results:

Test duration (seconds): i0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 318 1 1 18.000

6 125.000 80 0 0 0.000

7 125.000 80 0 0 0.000

8 125.000 80 0 0 0.000

9 125.000 80 0 0 0.000

10 125.000 80 0 0 0.000

11 125.000 80 0 0 0.000

12 125.000 80 0 0 0.000

13 125.000 80 0 0 0.000

14 125.000 80 0 0 0.000

15 125.000 80 0 0 0.000

16 125.000 80 0 0 0.000

17 125.000 80 0 0 0.000

18 125.000 80 0 0 0.000

19 125.000 80 0 0 0.000

20 125.000 80 0 0 0.000

21 125.000 80 0 0 0.000

22 125.000 80 0 0 0.000

23 125.000 80 0 0 0.000

24 125.000 80 0 0 0.000

25 125.000 80 0 0 0.000
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Experiment : EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4476.28

Test 22 characteristics:

Task

No.

1

2

3

4

5

6

7

8

9

i0

ii

12

13

14

15

16

17

18

19

2O

21

22

23

24

25

26

Frequency

(Hertz)

2.00

4.00

8.00

16.00

32.00

8.00

8.00

8.00

8.00

8 O0

8 O0

8 O0

8 O0

8 O0

8 O0

8 O0

8 O0

8 O0

8 O0

8.00

8.00

8.00

8.00

8.00

8.00

8.00

Kilo-Whets

per period

32

16

8

4

2

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

Kilo-Whets

per second

64,00

6400

64 00

64 00

64 00

64 00

64 00

64 00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

Requested Workload

Utilization

1.43 %

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1 43

1 43

1 43

1 43

1 43

1 43

1 43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

1664.00 37.17 %

Experiment step size: 1.43 %



Test 22 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000

6 125.000 80 0 0 0.000

7 125.000 80 0 0 0.000

8 125.000 80 0 0 0.000

9 125.000 80 0 0 0.000

10 125.000 80 0 0 0.000

11 125.000 80 0 0 0.000

12 125.000 80 0 0 0.000

13 125.000 80 0 0 0.000

14 125.000 80 0 0 0.000

15 125.000 80 0 0 0.000

16 125.000 80 0 0 0.000

17 125.000 80 0 0 0.000

18 125.000 80 0 0 0.000

19 125.000 80 0 0 0.000

20 125.000 80 0 0 0.000

21 125.000 80 0 0 0.000

22 125.000 80 0 0 0.000

23 125.000 80 0 0 0.000

24 125.000 80 0 0 0.000

25 125.000 80 0 0 0.000

26 125.000 80 0 0 0.000
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Experiment : EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4476.28

Test 23 characteristics:

Task

No.

1

2

3

4

5

6

7

8

9

i0

Ii

12

13

14

15

16

17

18

19

2O

21

22

23

24

25

26

27

Frequency

(Hertz)

2.00

4.00

8.00

16.00

32.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00
8 O0

8 O0

8 O0

8 O0

8 O0

8 O0
8.00

8.00

8.00

8.00

8.00

8.00

Kilo-Whets Kilo-Whets Requested Workload

per period per second Utilization

32 64.00 1.43 %

16 64.00 1.43 %

8 64.00 1.43 %

4 64.00 1.43 %

2 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

1728.00 38.60 %

Experiment step size: 1.43 %



Test 23 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000

6 125.000 80 0 0 0.000

7 125.000 80 0 0 0.000

8 125.000 80 0 0 0.000

9 125.000 80 0 0 0.000

10 125.000 80 0 0 0.000

11 125.000 80 0 0 0.000

12 125.000 80 0 0 0.000

13 125.000 80 0 0 0.000

14 125.000 80 0 0 0.000

15 125.000 80 0 0 0.000

16 125.000 80 0 0 0.000

17 125.000 80 0 0 0.000

18 125.000 80 0 0 0.000

19 125.000 80 0 0 0.000

20 125.000 80 0 0 0.000

21 125.000 80 0 0 0.000

22 125.000 80 0 0 0.000

23 125.000 80 0 0 0.000

24 125.000 80 0 0 0.000

25 125.000 80 0 0 0.000

26 125.000 80 0 0 0.000

27 125.000 80 0 0 0.000

anlnnliliilnllillllmNniilillilillllliiniliilililillnllNiilllllllinlNNIl|



_|||||||mmmm|mmnlun_n|mmmmmm|mmml|mm|m|||mmmu|mmmmmm|m|m||mmm|mmm||mm|m||||

Experiment: EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4476.28

Test 24 characteristics:

Task

No.

1

2

3

4

5

6

7

8

9

i0

ll

12

13

14

15

16

17

18

19

2O

21

22

23

24

25

26

27

28

Frequency

(Hertz)

2.00

4.00

8.00

16.00

32.00

8.00

8.00

8 O0

8 O0

8 O0

8 O0

8 O0

8 O0

8 O0

8 O0

8 O0

8 O0

8.00

8.00

8.00

8.00

8.00
8.00

8.00

8.00

8.00

8.00

8.00

Kilo-Whets Kilo-whets

per period per second

32 64.00

16 64.00 i.

8 64.00 i.

4 64.00 i.

2 64.00 i.

8 64.00 i.

8 64.00 i.

8 64.00 I.

8 64.00 i.

8 64.00 i.

8 64.00 I.

8 64.00 i.

8 64.00 i.

8 64.00 i.

8 64.00 i.

8 64.00 I.

8 64.00 I.

8 64.00 i.

8 64.00 1

8 64.00 1

8 64.00 1

8 64.00 1

8 64.00 1

8 64.00 1

8 64.00 1

8 64.00 1

8 64.00 1

8 64.00 1

Requested Workload

Utilization

1.43 %

43 %

43 %

43 %

43 %

43 %

43 %

43 %

43 %

43 %

43 %

43 %

43 %

43 %

43 %

43 %

43 %

43 %

43 %

43 %

43 %

43 %

43 %

43 %

43 %

43 %

43 %

43 %

Experiment step size: 1.43 %

17 92.00 40.03 %



Test 24 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped

No. in msecs Deadlines Deadlines Deadlines

1 500.000 20 0 0

2 250.000 40 0 0

3 125.000 80 0 0

4 62.500 160 0 0

5 31.250 320 0 0

6 125.000 80 0 0

7 125.000 80 0 0

8 125.000 80 0 0

9 125.000 80 0 0

10 125.000 80 0 0

11 125.000 80 0 0

12 125.000 80 0 0

13 125.000 80 0 0

14 125.000 80 0 0

15 125.000 80 0 0

16 125.000 80 0 0

17 125.000 80 0 0

18 125.000 80 0 0

19 125.000 80 0 0

20 125.000 80 0 0

21 125.000 80 0 0

22 125.000 80 0 0

23 125.000 80 0 0

24 125.000 80 0 0

25 125.000 80 0 0

26 125.000 80 0 0

27 125.000 80 0 0

28 125.000 80 0 0

Average

Late (msec)

0.000

0.000

0.000

0.000

0.000

0 000

0 000

0 000

0 000

0 000

0 000

0.000

0.000

0.000

0.000

0.000

0.000

0 000

0 000

0 000

0 000

0 000

0 000

0.000

0.000

0.000

0.000

0.000
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Experiment: EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4476.28

Test 25 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

NO. (Hertz) per period per second Utilization

1 2.00 32 64.00 1.43 %

2 4.00 16 64.00 1.43 %

3 8.00 8 64.00 1.43 %

4 16.00 4 64.00 1.43 %

5 32.00 2 64.00 1.43 %

6 8.00 8 64.00 1.43 %

7 8.00 8 64.00 1.43 %

8 8.00 8 64.00 1.43 %

9 8.00 8 64.00 1.43 %

i0 8.00 8 64.00 1.43 %

11 8.00 8 64.00 1.43 %

12 8.00 8 64.00 1.43 %

13 8.00 8 64.00 1.43 %

14 8.00 8 64.00 1.43 %

15 8.00 8 64.00 1.43 %

16 8.00 8 64.00 1.43 %

17 8.00 8 64.00 1.43 %

18 8.00 8 64.00 1.43 %

19 8.00 8 64.00 1.43 %

20 8.00 8 64.00 1.43 %

21 8.00 8 64.00 1.43 %

22 8.00 8 64.00 1.43 %

23 8.00 8 64.00 1.43 %

24 8.00 8 64.00 1.43 %

25 8.00 8 64.00 1.43 %

26 8.00 8 64.00 1.43 %

27 8.00 8 64.00 1.43 %

28 8.00 8 64.00 1.43 %

29 8.00 8 64.00 1.43 %

Experiment step size: 1.43 %

1856.00 41.46 %
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Test 25 results:

Test duration (seconds): i0.0

Task Period Met Missed Skipped

No. in msecs Deadlines Deadlines Deadlines

1 500.000 20 0 0

2 250.000 40 0 0

3 125.000 80 0 0

4 62.500 160 0 0

5 31.250 320 0 0

6 125.000 80 0 0

7 125.000 80 0 0

8 125.000 80 0 0

9 125.000 80 0 0
10 125.000 80 0 0

11 125.000 80 0 0

12 125.000 80 0 0

13 125.000 80 0 0

14 125.000 80 0 0

15 125.000 80 0 0

16 125.000 80 0 0

17 125.000 80 0 0

18 125.000 80 0 0

19 125.000 80 0 0

20 125.000 80 0 0

21 125.000 80 0 0

22 125.000 80 0 0

23 125.000 80 0 0

24 125.000 80 0 0

25 125.000 80 0 0

26 125.000 80 0 0

27 125.000 80 0 0

28 125.000 80 0 0

29 125.000 80 0 0

Average
Late (msec)

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000
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Experiment : EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4476.28

Test 26 characteristics:

Task

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2O

21

22

23

24

25

26

27

28

29

3O

Frequency

(Hertz)

2.00

4.00

8.00

16.00

32.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8 O0

8 O0

8 O0

8 O0

8 O0

8 O0

8 O0

8 O0

8 O0

8 O0

8 O0

8 O0

8 O0

8 O0

8 O0

8 O0

8 O0

Kilo-Whets Kilo-Whets

per period per second

32 64.00

16 64.00

8 64.00

4 64.00

2 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

Requested Workload

Utilization

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1920.00 42.89 %

Experiment step size: 1.43 %



Test 26 results:

Test duration (seconds) : I0.0

Task

No.

i

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Period

in msecs

500.000

250.000

125.000

62 500

31 250

125 000

125 000

125 000

125 000

125 000

125 000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125 000

125 000

125 000

125 000

125 000

125 000

Met Missed Skipped

Deadlines Deadlines Deadlines

20 0 0

40 0 0

80 0 0

160 0 0

320 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

Average

Late (msec)

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0 000

0 000

0 000

0 000

0 000

0 000

0 000

V

V
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Experiment: EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4476.28

Test 27 characteristics:

Task Frequency Kilo-Whets Kilo-Whets

No. (Hertz) per period per second
1 2.00 32 64.00

2 4.00 16 64.00

3 8.00 8 64.00

4 16.00 4 64.00

5 32.00 2 64.00

6 8.00 8 64.00

7 8.00 8 64.00

8 8.00 8 64.00

9 8.00 8 64.00

10 8.00 8 64.00

11 8.00 8 64.00

12 8.00 8 64.00

13 8.00 8 64.00

14 8.00 8 64.00

15 8.00 8 64.00

16 8.00 8 64.00

17 8.00 8 64.00

18 8.00 8 64.00

19 8.00 8 64.00

20 8.00 8 64.00

21 8.00 8 64.00

22 8.00 8 64.00

23 8.00 8 64.00

24 8.00 8 64.00

25 8.00 8 64.00

26 8.00 8 64.00

27 8.00 8 64.00

28 8.00 8 64.00

29 8.00 8 64.00

30 8.00 8 64.00

31 8.00 8 64.00

1984.00

Requested Workload

Utilization

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

143%

143%

143%

143%

143%

143%

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

44.32 %

Experiment step size: 1.43 %



Test 27 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000

6 125.000 80 0 0 0.000

7 125.000 80 0 0 0.000

8 125.000 80 0 0 0.000

9 125.000 80 0 0 0.000

10 125.000 80 0 0 0.000

11 125.000 80 0 0 0.000

12 125.000 80 0 0 0.000

13 125.000 80 0 0 0.000

14 125.000 80 0 0 0.000

15 125.000 80 0 0 0.000

16 125.000 80 0 0 0.000

17 125.000 80 0 0 0.000

18 125.000 80 0 0 0.000

19 125.000 80 0 0 0.000

20 125.000 80 0 0 0.000

21 125.000 80 0 0 0.000

22 125.000 80 0 0 0.000

23 125.000 80 0 0 0.000

24 125.000 80 0 0 0.000

25 125.000 80 0 0 0.000

26 125.000 80 0 0 0.000

27 125.000 80 0 0 0.000

28 125.000 80 0 0 0.000

29 125.000 80 0 0 0.000

30 125.000 80 0 0 0.000

31 125.000 80 0 0 0.000
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Experiment: EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4476.28

Test 28 characteristics:

Task Frequency Kilo-Whets

No. (Hertz) per period
1 2.00 32

2 4.00 16

3 8.00 8

4 16.00 4

5 32.00 2

6 8.00 8

7 8.00 8

8 8.00 8

9 8.00 8

I0 8.00 8

Ii 8.00 8

12 8.00 8

13 8.00 8

14 8.00 8

15 8.00 8

16 8.00 8

17 8.00 8

18 8.00 8

19 8.00 8

20 8.00 8

21 8.00 8

22 8.00 8

23 8.00 8

24 8.00 8

25 8.00 8

26 8.00 8

27 8.00 8

28 8.00 8

29 8.00 8

30 8.00 8

31 8.00 8

32 8.00 8

Kilo-Whets

per second

64.00

64.00

64.00

64.00

64.00

64.00

64 00

64 00

64 00

64 00

64 00

64 00

64 00

64.00

64.00

64 00

64 00

64 00

64 00

64 00

64 00

64 00

64 00

64 00

64 00

64,00

64.00

64.00

64.00

64.00

64.00

64.00

Requested Workload

Utilization

1.43 %

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1 43

1 43

1 43

1 43

1 43

1 43

1 43

1.43

1.43

1.43

1.43

1.43

1.43

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

2048.00 45.75 %

Experiment step size: 1.43 %



Test 28 results:

Test duration (seconds) : 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 78 1 1 22.000

4 62.500 160 0 0 0.000

5 31.250 318 1 1 16.000

6 125.000 80 0 0 0.000

7 125.000 80 0 0 0.000

8 125.000 80 0 0 0.000

9 125.000 80 0 0 0.000

10 125.000 78 1 1 25.000

11 125.000 80 0 0 0.000

12 125.000 80 0 0 0.000

13 125.000 80 0 0 0.000

14 125.000 80 0 0 0.000

15 125.000 78 1 1 27.000

16 125.000 80 0 0 0.000

17 125.000 78 1 1 30.000

18 125.000 80 0 0 0.000

19 125.000 80 0 0 0.000

20 125.000 78 1 1 11.000

21 125.000 80 0 0 0.000

22 125.000 80 0 0 0.000

23 125.000 80 0 0 0.000

24 125.000 80 0 0 0.000

25 125.000 80 0 0 0.000

26 125.000 80 0 0 0.000

27 125.000 80 0 0 0.000

28 125.000 80 0 0 0.000

29 125.000 80 0 0 0.000

30 125.000 80 0 0 0.000

31 125.000 80 0 0 0.000

32 125.000 80 0 0 0.000
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Experiment: EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4476.28

Test 29 characteristics:

Task Frequency Kilo-Whets

No. (Hertz) per period
1 2.00 32

2 4.00 16

3 8.00 8

4 16.00 4

5 32.00 2

6 8.00 8

7 8.00 8

8 8.00 8

9 8.00 8

10 8.00 8

11 8.00 8

12 8.00 8

13 8.00 8

14 8.00 8

15 8.00 8

16 8.00 8

17 8.00 8

18 8.00 8

19 8.00 8

20 8.00 8

21 8.00 8

22 8.00 8

23 8.00 8

24 8.00 8

25 8.00 8

26 8.00 8

27 8.00 8

28 8.OO 8

29 8.00 8

30 8.00 8

31 8.00 8

32 8.00 8

33 8.00 8

Kilo-Whets

per second

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

6400

64,00

64,00

6400

64,00

64,00

64,00

64,00

64 00

64,00

64,00

64 00

64.00

64.00

64.00

Requested Workload
Utilization

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

2112.00 47.18 %

Experiment step size: 1.43 %



Test 29 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000

6 125.000 80 0 0 0.000

7 125.000 80 0 0 0.000

8 125.000 80 0 0 0.000

9 125.000 80 0 0 0.000

i0 125.000 80 0 0 0.000

11 125.000 80 0 0 0.000

12 125.000 80 0 0 0.000

13 125.000 80 0 0 0.000

14 125.000 80 0 0 0.000

15 125.000 80 0 0 0.000

16 125.000 80 0 0 0.000

17 125.000 80 0 0 0.000

18 125.000 80 0 0 0.000

19 125.000 80 0 0 0.000

20 125.000 80 0 0 0.000

21 125.000 80 0 0 0.000

22 125.000 80 0 0 0.000

23 125.000 80 0 0 0.000

24 125.000 80 0 0 0.000

25 125.000 80 0 0 0.000

26 125.000 80 0 0 0.000

27 125.000 80 0 0 0.000

28 125.000 80 0 0 0.000

29 125.000 80 0 0 0.000

30 125.000 80 0 0 0.000

31 125.000 80 0 0 0.000

32 125.000 80 0 0 0.000

33 125.000 80 0 0 0.000
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Experiment : EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4476.28

Test 30 characteristics:

Task Frequency Kilo-Whets

No. (Hertz) per period

1 2.00 32

2 4.00 16

3 8.00 8

4 16.00 4

5 32.00 2

6 8.00 8

7 8.00 8

8 8.00 8
9 8.00 8

i0 8.00 8

11 8.00 8

12 8.00 8

13 8.00 8

14 8.00 8

15 8.00 8

16 8.00 8

17 8.00 8

18 8.00 8

19 8.00 8

20 8.00 8

21 8.00 8

22 8.00 8

23 8.00 8

24 8.00 8

25 8.00 8

26 8.00 8
27 8.00 8

28 8.00 8

29 8.00 8

30 8.00 8

31 8.00 8

32 8.00 8

33 8.00 8

34 8.00 8

Kilo-Whets

per second

64.00

64.00

64.00

64 00

64 00

64 00

64 00

64 00

64 00

64 00

6400

64 00

64 00

64 00

64 00

6400

64 00

64.00

64 00

64 00

64,00

64 O0

64 00

64 00

6400

64,00

64 00

64 00

64.00

64.00

64.00

64.00

64.00

64.00

Requested Workload
Utilization

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

2176.00 48.61%

Experiment step size: 1.43 %



Test 30 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 318 1 1 5.000

6 125.000 78 1 1 ii.000

7 125.000 78 1 1 96.000

8 125.000 80 0 0 0.000

9 125.000 80 0 0 0.000

10 125.000 80 0 0 0.000

11 125.000 80 0 0 0.000

12 125.000 80 0 0 0.000

13 125.000 80 0 0 0.000

14 125.000 80 0 0 0.000

15 125.000 80 0 0 0.000

16 125.000 78 1 1 30.000

17 125.000 80 0 0 0.000

18 125.000 80 0 0 0.000

19 125.000 78 1 1 27.000

20 125.000 78 1 1 15.000

21 125.000 80 0 0 0.000

22 125.000 80 0 0 0.000

23 125.000 80 0 0 0.000

24 125.000 80 0 0 0.000

25 125.000 78 1 1 24.000

26 125.000 78 1 1 18.000

27 125.000 78 1 1 21.000

28 125.000 80 0 0 0.000

29 125.000 80 0 0 0.000

30 125.000 80 0 0 0.000

31 125.000 80 0 0 0.000

32 125.000 80 0 0 0.000

33 125.000 80 0 0 0.000

34 125.000 80 0 0 0.000
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Experiment: EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per

Test 31 characteristics:

Second (KWIPS) : 4476.28

Task

No.

1

2

3

4

5

6

7

8

9

i0

II

12

13

14

15

16

17

18

19

2O

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Frequency

(Hertz)

2.00

4.00

8.00

16.00

32.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00
8.00

8.00

8 00

8 00

8 00

8 00

8 00

8 00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

Kilo-Whets Kilo-Whets Requested Workload

per period per second Utilization
32 64.00 1.43 %

16 64.00 1.43 %

8 64.00 1.43 %

4 64.00 1.43 %

2 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

Experiment step size: 1.43 %

2240.00 50.04 %



Test 31 results:

Test duration (seconds): I0.0

Task

No.

1

2

3

4

5

6

7

8

9

i0

ii

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Period

in msecs

500.000

250.000

125.000

62.500

31.250

125. 000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125 000

125 000

125 000

125 000

125 000

125 000

125 000

125.000

125.000

125. 000

125.000

125.000

Met Missed Skipped

Deadlines Deadlines Deadlines

20 0 0

40 0 0

80 0 0

160 0 0

320 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

8O 0 0

80 0 0

80 0 0

80 0 0

80 0 0

8O 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

Average

Late (msec)

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0.000

0.000

0.000
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Experiment: EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS} : 4476.28

Test 32 characteristics:

Task

No.

1

2

3

4

5

6

7

8

9

i0

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Frequency

(Hertz)

2.00

4.00

8.00

16.00

32.00

8.00

8.00

8 00

8 00

8 00

8 00

8 00

8 00

8 00

800

8 00

8,00
800

8 O0
8 O0

8 O0

8,00

8,00

800
800

800

8.00

800

800
800

800

800

800

8 O0
8 O0

8.00

Kilo-Whets

per period

32

16

8

4

2

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

Kilo-Whets

per second

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64 00

64 00

64 00

64 00

64 00

64 00

64,00

64 00

64 00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

Requested Workload
Utilization

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

2304.00 51.47 %

Experiment step size: 1.43 %



Test 32 results:

Test duration (seconds): I0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 318 1 1 15.000

6 125.000 78 1 1 33.000

7 125.000 80 0 0 0.000

8 125.000 80 0 0 0.000

9 125.000 78 1 1 120.000

10 125.000 80 0 0 0.000

11 125.000 80 0 0 0.000

12 125.000 80 0 0 0.000

13 125.000 80 0 0 0.000

14 125.000 80 0 0 0.000

15 125.000 78 1 1 35.000

16 125.000 80 0 0 0.000

17 125.000 80 0 0 0.000

18 125.000 80 0 0 0.000

19 125.000 80 0 0 0.000

20 125.000 78 1 1 23.000

21 125.000 80 0 0 0.000

22 125.000 80 0 0 0.000

23 125.000 80 0 0 0.000

24 125.000 78 1 1 39.000

25 125.000 80 0 0 0.000

26 125.000 80 0 0 0.000

27 125.000 78 1 1 29.000

28 125.000 78 1 1 20.000

29 125.000 80 0 0 0.000

30 125.000 80 0 0 0.000

31 125.000 80 0 0 0.000

32 125.000 78 1 1 26.000

33 125.000 80 0 0 0.000

34 125.000 78 1 1 2.000

35 125.000 80 0 0 0.000

36 125.000 80 0 0 0.000

- _J
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Experiment: EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4476.28

Test 33 characteristics:

Task

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Frequency

(Hertz)
2.00

4.00

8.00

16.00

32.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00
8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8 O0

8 O0

8 O0

8 O0

8 O0

8 O0

8 O0

8.00

8.00

8.00

8.00

8.00

Kilo-Whets

per period

32

16

8

4

2

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

Kilo-Whets

per second

64.00

64.00

64 00

64 00

64 00

6400

6400

6400

6400

6400

64 00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

Requested Workload

Utilization

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

Experiment step size: 1.43 %

2368.00 52.90 %



Test 33 results:

Test duration (seconds): i0.0

Task Period Met Missed Skipped

NO. in msecs Deadlines Deadlines Deadlines

1 500.000 20 0 0

2 250.000 40 0 0

3 125.000 80 0 0

4 62.500 160 0 0

5 31.250 320 0 0

6 125.000 80 0 0

7 125.000 80 0 0

8 125.000 80 0 0

9 125.000 80 0 0

10 125.000 80 0 0

11 125.000 80 0 0

12 125.000 80 0 0

13 125.000 80 0 0

14 125.000 80 0 0

15 125.000 80 0 0

16 125.000 80 0 0

17 125.000 80 0 0

18 125.000 80 0 0

19 125.000 80 0 0

20 125.000 80 0 0

21 125.000 80 0 0

22 125.000 80 0 0

23 125.000 80 0 0

24 125.000 80 0 0

25 125.000 80 0 0

26 125.000 80 0 0

27 125.000 80 0 0

28 125.000 80 0 0

29 125.000 80 0 0

30 125.000 80 0 0

31 125.000 80 0 0

32 125.000 80 0 0

33 125.000 80 0 0

34 125.000 80 0 0

35 125.000 80 0 0

36 125.000 80 0 0

37 125.000 80 0 0

Average

Late (msec)

0.000

0.000

0.000

0.000

0.000

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0.000

0.000

0.000

0.000

0.000

0 000

0 000

0 000

0 000

0 000

0 000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

v
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Experiment : EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4476.28

Test 34 characteristics:

Task

No.

1

2

3

4

5

6

7

8

9

i0

ii

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Frequency

(Hertz)

2 00

4 00

8 00

16 00

32 00

8 00

8 00

8 00

8 00

8 00

8 00

8 00

8 00

8 00

8.00

8.O0

8.00

8.00

8.00

8.00
8 O0

8 O0

8 O0
8 O0

8 O0

8 O0

8 O0

8 O0
8 O0

8 O0
8 O0

8.00

8.00

8.00

8.00

8.00
8.00

8.00

Kilo-Whets

per period
32

16

8

4

2

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

Kilo-Whets

per second
64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

Requested Workload

Utilization

1.43 %

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1 43

1 43

1 43

1 43

1 43

1 43

1 43

1 43

1 43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

2432.00 54.33 %

Experiment step size: 1.43 %



Test 34 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

NO. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 38 1 1 127.000

3 125.000 78 1 1 1.000

4 62.500 160 0 0 0.000

5 31.250 318 1 1 7.000

6 125.000 80 0 0 0.000

7 125.000 80 0 0 0.000

8 125.000 78 1 1 31.000

9 125.000 78 1 1 8.000

10 125.000 78 1 1 38.000

11 125.000 80 0 0 0.000

12 125.000 78 1 1 21.000

13 125.000 78 1 1 2.000

14 125.000 78 1 1 35.000

15 125.000 80 0 0 0.000

16 125.000 80 0 0 0.000

17 125.000 80 0 0 0.000

18 125.000 80 0 0 0.000

19 125.000 80 0 0 0.000

20 125.000 80 0 0 0.000

21 125.000 80 0 0 0.000

22 125.000 78 1 1 46.000

23 125.000 80 0 0 0.000

24 125.000 80 0 0 0.000

25 125.000 80 0 0 0.000

26 125.000 80 0 0 0.000

27 125.000 80 0 0 0.000

28 125.000 80 0 0 0.000

29 125.000 80 0 0 0.000

30 125.000 78 1 1 18.000

31 125.000 78 1 1 43.000

32 125.000 78 1 1 27.000

33 125.000 78 1 1 5.000

34 125.000 78 1 1 24.000

35 125.000 80 0 0 0.000

36 125.000 80 0 0 0.000

37 125.000 80 0 0 0.000

38 125.000 80 0 0 0.000

|lniRlliilillililil|iNilli|iillllNiillBn|linlNiliil|illllilillili|iliilN
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Experiment : EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4476.28

TeSt 35 characteristics:

Task

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Frequency

(Hertz)

2.00

4.00

8.00

16.00

32 00

8 00

8 00

8 00

8 00

8 00

8 00

8 00

8 00

8 00

8 00

8 00

8 00

8.00

8.00

8 00

8 00

8 00

8 00

8 00

8 00

8 00

8 00

8 00

8 00

8.00

8.00

8.00

8.00

8.00
8.00

8.00

8.00
8.00

8.00

Kilo-Whets

per period
32

16

8

4

2

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

Kilo-Whets

per second
64._0

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64 00

64 00

64 00

64 00

64 00

64 00

6400

64,00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

64.00

Requested Workload

Utilization

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

2496.00 55.76 %

Experiment step size: 1.43 %



Test 35 results:

Test duration (seconds): 10.0

Task

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

3O

31

32

33

34

35

36

37

38

39

Period

in msecs

500.000

250.000

125.000

62.500

31.250

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125 000

125 000

125 000

125 000

125 000

125 000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

Met Missed Skipped
Deadlines Deadlines Deadlines

20 0 0

40 0 0

80 0 0

160 0 0

320 0 0

80 0 0

80 0 0

78 1 1

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

78 1 1

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

78 1 1

78 i i

80 0 0

78 1 1

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

80 0 0

Average

Late (msec)

0.000

0.000

0.000

0.000

0.000

0.000

0.000

2.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

1.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

2.000

12.000

0.000

2.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

v
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Experiment : EXPERIMENT 4

completion on: Miss/skip 50 deadlines

Kaw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28

Test 36 characteristics:

Task Frequency Kilo-Whets Kilo-Whets

No. (Hertz) per period per second

1 2.00 32 64.00

2 4.00 16 64.00

3 8.00 8 64.00

4 16.00 4 64.00

5 32.00 2 64.00

6 8.00 8 64.00

7 8.00 8 64.00

8 8.00 8 64.00

9 8.00 8 64.00

10 8.00 8 64.00

11 8.00 8 64.00

12 8.00 8 64.00

13 8.00 8 64.00

14 8.00 8 64.00

15 8.00 8 64.00

16 8.00 8 64.00

17 8.00 8 64.00

18 8.00 8 64.00

19 8.00 8 64.00

20 8.00 8 64.00

21 8.00 8 64.00

22 8.00 8 64.00

23 8.00 8 64.00

24 8.00 8 64.00

25 8.00 8 64.00

26 8.00 8 64.00

27 8.00 8 64.00

28 8.00 8 64.00

29 8.00 8 64.00

30 8.00 8 64.00

31 8.00 8 64.00

32 8.00 8 64.00

33 8.00 8 64.00

34 8.00 8 64.00

35 8.00 8 64.00

36 8.00 8 64.00

37 8.00 8 64.00

38 8.00 8 64.00

39 8.00 8 64.00

40 8.00 8 64.00

Requested Workload

Utilization

1.43 %

1.43

1.43

1.43

1.43

1.43

1.43

1.43

i 43

i 43

1 43

i 43

1 43

1 43

1 43

1 43

1 43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

1.43

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

2560.00 57.19 %

Experiment step size: 1.43 %



Test 36 results:

Test duration (seconds): 10.0

Task

No.

1

2

3

4

5

6

7

8

9

I0

ll

12

13

14

15

16

17

18

19

2O

21

22

23

24

25

26

27

28

29

3O

31

32

33

34

35

36

37

38

39

4O

Period

in msecs

500.000

250.000

125.000

62.500

31.250

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125.000

125 000

125 000

125 000

125 000

125 000

125 000

125 000

125 000

125 000

125 000

125.000

125.000

125.000

125.000

Met Missed Skipped Average

Deadlines Deadlines Deadlines Late (msec)

16 2 2 250.000

32 4 4 1.500

80 0 0 0.000

160 0 0 0.000

318 1 1 11.000

78 1 1 4.000

80 0 0 0.000

78 1 1 31.000

78 1 1 37.000

78 1 1 12.000

80 0 0 0.000

76 2 2 60.500

76 2 2 22.000

76 2 2 115.000

76 2 2 1.000

78 1 1 1.000

78 1 1 1.000

78 1 1 112.000

78 1 1 123.000

78 1 1 1.000

80 0 0 0.000

78 1 1 15.000

78 1 1 111.000

78 1 1 53.000

80 0 0 0.000

76 2 2 1.500

80 0 0 0.000

78 1 1 44.000

78 1 1 56.0O0

78 1 1 47.000

78 1 1 50.000

80 0 0 0.000

76 2 2 12.500

78 1 i 5.000

78 1 1 1.000

78 1 1 27.000

74 3 3 7.000

78 1 1 21.000

80 0 0 0.000

78 1 1 1.000



Baseline test:

HARTSTONE BENCHMARK SUMMARY RESULTS
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Experiment: EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28

Test 1 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

NO. (Hertz) per period per second Utilization
1 2.00 32 64.00 1.43 %

2 4.00 16 64.00 1.43 %

3 8.00 8 64.00 1.43 %

4 16.00 4 64.00 1.43 %

5 32.00 2 64.00 1.43 %

320.00 7.15 %

Experiment step size: 1.43 %

Test 1 results:

_Test duration (seconds): I0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000

|ll||mmig|illiB|||Ullimmgmlm|ng|mm|||imm||mm|i|||i||m|||nilmn|Bmnl|inu||||m|



Last test with no missed/skipped deadlines:

Experiment: EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4476.28

Test 33 characteristics:

TaSk

NO.

1

2

3

4

5

6

7

8

9

I0

II

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Frequency

(Hertz)

2.00

4.00

8.00

16.00

32.00

8.00

8 00

8 00

8 00

8 00

8 00

8 00

8 00

8 00

8.00

8.00

8.00

8.00

8.00
8.00

8.00
8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

Kilo-Whets Kilo-Whets

per period per second
32 64.00

16 64.00

8 64.00

4 64.00

2 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

8 64.00

2368.00

Requested Workload

Utilization

1.43 %

1.43 %

143%

143%

143%

143%

143%

143%

143%

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

143%

143%

143%

143%

143%

143%

143%

143%

143%

143%

143%

143%

143%

143%

1.43 %

1.43 %

1.43 %

52.90 %

Experiment step size: 1.43 %



Test 33 results:

Test duration (seconds} : 10.0

Task Period Met Missed Skipped
No. in msecs Deadlines Deadlines Deadlines

1 500.000 20 0 0

2 250.000 40 0 0

3 125.000 80 0 0
4 62.500 160 0 0

5 31.250 320 0 0

6 125.000 80 0 0

7 125.000 80 0 0

8 125.000 80 0 0

9 125.000 80 0 0
10 125.000 80 0 0

11 125.000 80 0 0

12 125.000 80 0 0

13 125.000 80 0 0

14 125.000 80 0 0

15 125.000 80 0 0
16 125.000 80 0 0

17 125.000 80 0 0

18 125.000 80 0 0

19 125.000 80 0 0

20 125.000 80 0 0
21 125.000 80 0 0

22 125.000 80 0 0

23 125.000 80 0 0
24 125.000 80 0 0

25 125.000 80 0 0
26 125.000 80 0 0

27 125.000 80 0 0

28 125.000 80 0 0
29 125.000 80 0 0

30 125.000 80 0 0

31 125.000 80 0 0

32 125.000 80 0 0
33 125.000 80 0 0

34 125.000 80 0 0

35 125.000 80 0 0

36 125.000 80 0 0

37 125.000 80 0 0

Average
Late (msec)

0.000
0.000

0.000

0.000

0.000

0.000

0.000

0.000
0.000

0.000

0.000

0.000

0.000
0.000

0.000

0.000

0.000

0.000

0.000
0.000

0.000
0.000

0.000

0.000

0.000

0 000
0 000
0 000

0 000
0 000

0 000
0.000

0.000

0.000

0.000
0.000

0.000

=mmmmmmmmmammmm|mmmm|mmmmmmmmmmmmm=mmm|mmmmmammmmmmmim|mmmmmmmmmmmmummm



Test when deadlines first missed/skipped:
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Experiment: EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4476.28

Test 4 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization
1 2.00 32 64.00 1.43 %

2 4.00 16 64.00 1.43 %

3 8.00 8 64.00 1.43 %

4 16.00 4 64.00 1.43 %

5 32.00 2 64.00 1.43 %

6 8.00 8 64.00 1.43 %

7 8.00 8 64.00 1.43 %

8 8.00 8 64.00 1.43 %

512.00 11.44 %

Experiment step size: 1.43 %

Test 4 results:

Test duration (seconds): I0.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 318 1 1 2.000

6 125.000 80 0 0 0.000

7 125.000 80 0 0 0.000

8 125.000 80 0 0 0.000



Final test performed:

Experiment: EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second

Test 36 characteristics:

(KWIPS) : 4476.28

Task

No.

1

2

3

4

5

6

7

8

9

i0

11

12

13

14

15

16

17

18

19

2O

21

22

23

24

25

26

27

28

29

3O

31

32

33

34

35

36

37

38

39

4O

Frequency

(Hertz)

2.00

4.00

8.00

16.00

32.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00
8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8 00

8 00

8 00

8 00

8 00

8 00

8.00

8.00

Kilo-Whets Kilo-Whets Requested Workload

per period per second Utilization

32 64.00 1.43 %

16 64.00 1.43 %

8 64.00 1.43 %

4 64.00 1.43 %

2 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

8 64.00 1.43 %

2560.00 57.19 %

_xperiment step size: 1.43 %



Test 36 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 16 2 2 250.000
2 250.000 32 4 4 1.500
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 318 1 1 11.000
6 125.000 78 1 1 4.000
7 125.000 80 0 0 0.000
8 125.000 78 1 1 31.000
9 125.000 78 1 1 37.000

i0 125.000 78 1 1 12.000
ii 125.000 80 0 0 0.000
12 125.000 76 2 2 60.500
13 125.000 76 2 2 22.000
14 125.000 76 2 2 115.000
15 125.000 76 2 2 1.000
16 125.000 78 1 1 1.000
17 125.000 78 1 1 1.000
18 125.000 78 1 1 112.000
19 125.000 78 1 1 123.000
20 125.000 78 1 1 1.000
21 125.000 80 0 0 0.000
22 125.000 78 1 1 15.000
23 125.000 78 1 1 111.000
24 125.000 78 1 1 53.000
25 125.000 80 0 0 0.000
26 125.000 76 2 2 1.500
27 125.000 80 0 0 0.000
28 125.000 78 1 1 44.000
29 125.000 78 1 1 56.000
30 125.000 78 1 1 47.000
31 125.000 78 1 1 50.000
32 125.000 80 0 0 0.000
33 125.000 76 2 2 12.500
34 125.000 78 1 1 5.000
35 125.000 78 1 1 1.000
36 125.000 78 1 1 27.000
37 125.000 74 3 3 7.000
38 125.000 78 1 1 21.000
39 125.000 80 0 0 0.000
40 125.000 78 1 1 1.000



" Benchmark : Hartstone Benchmark, version 1.0

Compiler : Verdix 6.0 -> Sun SPARC

Target : Sun SPARC Station i+ (25 MHz) - multiuser mode

Characteristics of best test for this experiment:

(no missed/skipped deadlines)

Test 33 of Experiment 4

Raw (non-tasking) benchmark speed in KWIPS: 4476.28

Full task set:

Total Deadlines Task Set Total

Tasks Per Second Utilization KWIPS

37 318.00 52.90 % 2368.00

Highest-frequency task:

Period Deadlines Task Task

(msec) Per Second Utilization KWIPS

31.250 32.00 1.43 % 64.00

Experiment step size: 1.43 %

END OF HARTSTONE BENCHMARK SUMMARY RESULTS
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